
MT Marathon 2023: Decoding

Rico Sennrich
29 August 2023

University of Zurich
University of Edinburgh



Decoding for Phrase-based Stastistical Machine TranslationDecoding: Hypothesis Expansion

er geht ja nicht nach hause

are

it

he
goes

does not

yes

go

to

home

home

also create hypotheses from created partial hypothesis

Chapter 6: Decoding 14

http://www.statmt.org/book/slides/06-decoding.pdf

1

http://www.statmt.org/book/slides/06-decoding.pdf


Overview

today’s lecture
• what are the standard decoding algorithms for neural MT?
• problems with beam search
• some advanced decoding algorithms:

• constrained decoding
• simultaneous translation
• Minimum Bayes Risk decoding
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Basic Decoding Algorithms for
Neural Machine Translation



Modelling Translation

• Suppose that we have:
• a source sentence S of length m (x1, . . . , xm)
• a target sentence T of length n (y1, . . . , yn)

• We can express translation as a probabilistic model

T ∗ = arg max
T

p(T |S)

• Expanding using the chain rule gives

p(T |S) = p(y1, . . . , yn|x1, . . . , xm)

=

n∏
i=1

p(yi|y1, . . . , yi−1, x1, . . . , xm)
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Application of Encoder-Decoder Model

Scoring (a translation)
T = La croissance économique s’est ralentie ces dernières années.
S = Economic growth has slowed down in recent years.
p(T|S) = ?

Decoding ( a source sentence)
Generate the most probable translation of a source sentence

S = Economic growth has slowed down in recent years.
T ∗ = argmaxT p(T |S)
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Decoding for Neural Machine Translation: Exact Search

naive algorithm:

• generate every possible sentence T in target language
• compute score p(T |S) for each
• pick best one

intractable: |vocab|N translations for output length N
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Decoding for Neural Machine Translation: Exact Search/2

better exact search [Stahlberg and Byrne, 2019, Meister et al., 2020]:

• probability of hypothesis monotononically decreases as it is extended
→ we can safely discard any partial hypothesis that is less probably than most probable
completed hypothesis

• build tree of translation hypotheses depth-first, or with Dijkstra’s algorithm

still impractically slow, and only used for analysis
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Decoding for Neural Machine Translation: Sampling/Greedy Search

• at each time step, compute probability distribution
P (yi|S, y<i)

• select yi according to some heuristic:
• sampling: sample from P (yi|S, y<i)

• greedy search: pick argmaxy p(yi|S, y<i)

• continue until we generate <eos>
! 0.928

0.175

<eos> 0.999

0.175

hello 0.946

0.056

world 0.957

0.100

0

efficient, but suboptimal
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Decoding for Neural Machine Translation: Beam Search

• maintain list of K hypotheses (beam)
• at each time step:

• expand each hypothesis k: p(yki |S, yk<i)

• select K hypotheses with highest total
probability, and add to new beam:∏

i

p(yki |S, yk<i)

• remove hypotheses ending in <eos>
from beam (to final list)

• when beam is empty, select hypothesis (in
final list) with highest total probability

hello 0.946

0.056

world 0.957

0.100

World 0.010

4.632

. 0.030

3.609

! 0.928

0.175

... 0.014

4.384

<eos> 0.999

3.609

world 0.684

5.299

HI 0.007

4.920

<eos> 0.994

4.390

Hey 0.006

5.107

<eos> 0.999

0.175

0

K = 3
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Decoding Efficiency: Batching

minibatches allow more parallelism at training time

at inference time, similar strategy possible:

• predict continuations of hypotheses in beam in parallel
• process different source sentences in parallel
• do a mix of both
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Decoding Efficiency: Further Pointers

• prune model parameters
efficiency gains especially when whole structures (layers, attention heads, ...) can be
pruned

• quantize model parameters to 4-bit or 8-bit
better memory efficiency; faster computation (depending on hardware)

• knowledge distillation improves quality with small models and beam search
• predict different time-steps in parallel:

non-autoregressive translation: all time-steps predicted in parallel
semi-autoregressive translation: multiple time-steps predicted in parallel

For further reading, check out the efficiency shared task of WMT!
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Model Ensembles

basic idea

• combine decision of multiple classifiers by voting
• ensemble will reduce error if these conditions are met:

• base classifiers are accurate
• base classifiers are diverse (make different errors)

11



Ensembles in NMT

• vote at each time step to explore same search space
(better than decoding with one, reranking n-best list with others)

• voting mechanism: typically average (log-)probability

logP (yi|S, y<i) =

∑M
m=1 logPm(yi|S, y<i)

M

• requirements for voting at each time step:
• same output vocabulary
• same factorization of Y
• but: internal network architecture may be different

• individual models can be checkpoints of same training run
(cheap, but less diversity)
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Problems with Beam Search



Beam Size

• small beam (K ≈ 10) offers good speed-quality trade-off
• larger beams can even hurt quality! [Koehn and Knowles, 2017]
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Figure 10: Translation quality with varying beam sizes. For large beams, quality decreases, especially
when not normalizing scores by sentence length.

36

how can beam search perform worse with larger beams?
hint: search errors not to blame: exact search gives even worse results
[Stahlberg and Byrne, 2019, Meister et al., 2020]
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Figure 10: Translation quality with varying beam sizes. For large beams, quality decreases, especially
when not normalizing scores by sentence length.

36

how can beam search perform worse with larger beams?

hint: search errors not to blame: exact search gives even worse results
[Stahlberg and Byrne, 2019, Meister et al., 2020]
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Figure 10: Translation quality with varying beam sizes. For large beams, quality decreases, especially
when not normalizing scores by sentence length.
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how can beam search perform worse with larger beams?
hint: search errors not to blame: exact search gives even worse results
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Length Bias

locally normalized models
have label bias
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Figure 2: A locally normalized model must determine,
at each time step, a “budget” for the total remaining
log-probability. In this example sentence, “The British
women won Olymp ic gold in p airs row ing,” the empty
translation has initial position 622 in the beam. Already
by the third step of decoding, the correct translation
has a lower score than the empty translation. However,
using greedy search, a nonempty translation would be
returned.

3 Correcting Length

To address the brevity problem, many designers of
NMT systems add corrections to the model. These
corrections are often presented as modifications to
the search procedure. But, in our view, the brevity
problem is essentially a modeling problem, and
these corrections should be seen as modifications
to the model (Section 3.1). Furthermore, since
the root of the problem is local normalization, our
view is that these modifications should be trained
as globally-normalized models (Section 3.2).

3.1 Models
Without any length correction, the standard model
score (higher is better) is:

s(e) =

m∑

i=1

log P(ei | e1:i).

To our knowledge, there are three methods in
common use for adjusting the model to favor
longer sentences.

Length normalization divides the score by m
(Koehn and Knowles, 2017; Jean et al., 2015;
Boulanger-Lewandowski et al., 2013):

s′(e) = s(e) / m.

Google’s NMT system (Wu et al., 2016) relies
on a more complicated correction:

s′(e) = s(e)
/ (5 + m)α

(5 + 1)α
.

Finally, some systems add a constant word re-
ward (He et al., 2016):

s′(e) = s(e) + γm.

If γ = 0, this reduces to the baseline model. The
advantage of this simple reward is that it can be
computed on partial translations, making it easier
to integrate into beam search.

3.2 Training
All of the above modifications can be viewed as
modifications to the base model so that it is no
longer a locally-normalized probability model.

To train this model, in principle, we should use
something like the globally-normalized negative
log-likelihood:

L = − log
exp s′(e∗)∑
e exp s′(e)

where e∗ is the reference translation. However, op-
timizing this is expensive, as it requires perform-
ing inference on every training example or heuris-
tic approximations (Andor et al., 2016; Shen et al.,
2016).

Alternatively, we can adopt a two-tiered model,
familiar from phrase-based translation (Och and
Ney, 2002), first training s and then training s′

while keeping the parameters of s fixed, possibly
on a smaller dataset. A variety of methods, like
minimum error rate training (Och, 2003; He et al.,
2016), are possible, but keeping with the globally-
normalized negative log-likelihood, we obtain, for
the constant word reward, the gradient:

∂L
∂γ

= −|e∗| + E[|e|].

If we approximate the expectation using the mode
of the distribution, we get

∂L
∂γ
≈ −|e∗| + |ê|

where ê is the 1-best translation. Then the stochas-
tic gradient descent update is just the familiar per-
ceptron rule:

γ ← γ + η (|e∗| − |ê|),

214

[Murray and Chiang, 2018]:
<eos> as low-entropy state

heuristic solutions:
• divide total cost by length (length normalization):

score(Y,X) = log(P (Y |X))
|Y |

• more complex normalisation term parametrised by α

score(Y,X) = log(P (Y |X))
(5+|Y |)α

(6)α

• regularize towards uniform information density
e.g. squared regularizer:
score(Y,X) =

∑n
i=1(− log p(yi|y<i, X))2

14



Other Low-Entropy States

• copy mode: if prefix is copy of input, highly probable that next token continues pattern.
• repetition loop: what are likely continuations of this hypothesis?

oh my god ! ! ! ! ! ! ! !
• hallucination: certain prefixes (unrelated to source) that happen to be low entropy

(frequent during training?)

15



Advanced Decoding Algorithms



Constrained Decoding

why?
• force translation of terminology
• interactive machine translation
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Prefix-Constrained Decoding

• cumbersome in phrase-based SMT
• very natural in neural MT
• standard decoding:

p(T |S) =
n∏

i=1

p(yi|y1, . . . , yi−1, x1, . . . , xm)

• prefix-constrained decoding:

PRE = y1, . . . , yj

p(T |S,PRE) =
n∏

i=j+1

p(yi|y1, . . . , yi−1, x1, . . . , xm)

• simple change to decoding algorithm; no changes to model/training

17



Constrained Decoding

arbitrary constraints
• how can we decode with more general constraints?
• keep track of how many constraints hypothesis fulfills
• finished hypothesis is only valid if all constraints are fulfilled
• challenge: hypotheses that fulfill constraints must survive pruning

18



Constrained Decoding

Grid Beam Search [Hokamp and Liu, 2017]
• core idea: eliminate competition between hypos that fulfill different number of constraints
• 2d grid (each box is one beam):

• x axis: number of time steps
• y axis: number of constraint tokens matched

Figure 1: A visualization of the decoding process for an actual example from our English-German MT experiments. The output
token at each timestep appears at the top of the figure, with lexical constraints enclosed in boxes. Generation is shown in
blue, Starting new constraints in green, and Continuing constraints in red. The function used to create the hypothesis at each
timestep is written at the bottom. Each box in the grid represents a beam; a colored strip inside a beam represents an individual
hypothesis in the beam’s k-best stack. Hypotheses with circles inside them are closed, all other hypotheses are open. (Best
viewed in colour).

discussion of GBS, Section 3 discusses the lex-
ically constrained decoding algorithm in detail,
Section 4 presents our experiments, and Section 5
gives an overview of closely related work.

2 Background: Beam Search for
Sequence Generation

Under a model parameterized by θ, let the best
output sequence ŷ given input x be Eq. 1.

ŷ = argmax
y∈{y[T]}

pθ(y|x), (1)

where we use {y[T]} to denote the set of all se-
quences of length T . Because the number of pos-
sible sequences for such a model is |v|T , where |v|
is the number of output symbols, the search for ŷ
can be made more tractable by factorizing pθ(y|x)
into Eq. 2:

pθ(y|x) =
T∏
t=0

pθ(yt|x; {y0 . . . yt−1}). (2)

The standard approach is thus to generate the
output sequence from beginning to end, condition-
ing the output at each timestep upon the input x,

and the already-generated symbols {y0 . . . yi−t}.
However, greedy selection of the most probable
output at each timestep, i.e.:

ŷt = argmax
yi∈{v}

p(yi|x; {y0 . . . yt−1}), (3)

risks making locally optimal decisions which are
actually globally sub-optimal. On the other hand,
an exhaustive exploration of the output space
would require scoring |v|T sequences, which is
intractable for most real-world models. Thus, a
search or decoding algorithm is often used as a
compromise between these two extremes. A com-
mon solution is to use a heuristic search to at-
tempt to find the best output efficiently (Pearl,
1984; Koehn, 2010; Rush et al., 2013). The key
idea is to discard bad options early, while trying
to avoid discarding candidates that may be locally
risky, but could eventually result in the best overall
output.

Beam search (Och and Ney, 2004) is probably
the most popular search algorithm for decoding se-
quences. Beam search is simple to implement, and
is flexible in the sense that the semantics of the

19



Constrained Decoding

Grid Beam Search [Hokamp and Liu, 2017]
• very general:

• agnostic to model architecture
• requires no source-side information
• requires no retraining

• constraints must be in-vocabulary: use subword-level model
• problem: high computational complexity: O(|V |ktc)

(k: beam size; t: length; c: # constraint tokens)
→ [Post and Vilar, 2018] use single, shared beam

20



Soft Constraints: Sentence-Level

motivation: controlling politeness/formality

T-V distinction
language informal (T) formal (V)
Latin tu vos
Chinese 你 (nǐ) 您 (nín)
French tu vous
German du Sie

Early Modern English thou ye
Modern English you

What users want

• inconsistency in T-V choice is a “limitation of MT technology” that is “often
frustrat[ing]” to post-editors [Etchegoyhen et al., 2014]
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Soft Constraints: Sentence-Level

Core idea
• additional input feature that is based on target-side information

→ extra word at end of source sentence
• mark in English text if German translation is formal or not (+noise)

• Are you ok?

<formal>

• Sind Sie in Ordnung?
• are you ok?

<informal>

• Bist du in Ordnung?
At test time
• we can control level of formality by adding side constraints to input

22
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Soft Constraints: Sentence-Level

Core idea
• additional input feature that is based on target-side information

→ extra word at end of source sentence
• mark in English text if German translation is formal or not (+noise)

• Are you ok? <formal>
• Sind Sie in Ordnung?

• are you ok? <informal>
• Bist du in Ordnung?

At test time
• we can control level of formality by adding side constraints to input
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Results: formality as a function of soft constraint
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Other applications of soft constraints

• control production of other information missing from source text
• gender marking
• tense
• evidentiality
• ...

• domain adaptation
• control output language

24



Soft Constraints: Token-Level

recipe for terminological constraints [Dinu et al., 2019]:
project target-side information (translations) into source; mark them with token-level features

• at training time, copy target words to source based on terminology match.
(but not always, so that model still works without constraints)

• extra embedding indicates whether word should be:
0 translated normally
1 not translated, but used for disambiguation
2 copied

• with the right training data augmentation (fuzzy matching between target word and
terminology entry), model also learns to inflect terms.

src (orig) all alternates shall be elected for one term.
ref alle Stellvertreter werden für eine Amtszeit gewählt.
src-app all0 alternates1 Stellvertreter2 shall0 be0 elected0 for0 one0 term0.
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Simultaneous Translation

objectives in simultaneous translation:

1 maximize translation quality
2 minimize latency

to minimize latency, start translating before full input has been seen
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Figure 7: Comparison of DE→EN examples using the proposed framework and usual NMT system respectively. Both the
heatmaps share the same setting with Fig. 1. The verb “gedeckt” is incorrectly translated in simultaneous translation.

Source	 	AP=0.3	 	AP=0.7	 	CW=2	 CW=8	
The		 The	The					 	 The		 	
people		 p--	i--	ent	the	p--	

ol--	s							
	 	 	

,	 								,						 	 p--	riv--	 	
as		 	 	 ers	 	
I					 as	I	 	 	 	
heard		 я	слышал	 Люди		 							,	 Люди		
in	 	 ,		как	я	слышал	 	 	
the	 	 	 как		 	
countryside	 						в			 						в			 я	слышал	 	
,	 	 	 	 								,	
want	 сельской	

местности						
сельской		 						в			 как	я	

a	 	 местности		 	 слышал		
Government	 	 	 сельской		 	
that	 						,	 	 	 						в				
is	 	 	 местности		 сельской			
not	 	 	 	 	
made	 хочу			 	 						,	 	
up	 правительство	 	 	 местности			
of	 	 	 хочу			 	
thi--	 ,	 ,	 	 	
eves	 	 хотят			 правительство	 	
.	 	 	 	 						,	
<eos>	 которое	не	

производится	
во--	ров	.	

,	чтобы	
правительство	,	
которое	не	в--	
меши--	вается	в	
во--	ры	.	

,	которое	не	
является	
состав--	ной	
частью	во--	ров	
.	

хотят	,	чтобы	
правительство	,	
которое	не	в--	
меши--	вается	в	
во--	ры	.	

Summary	 BLEU=39/	
AP=0.46	

BLEU=64/AP=0.
77	

BLEU=54/CW=1.
76	

BLEU=64/CW=2.
55	

	

Figure 8: Given the example input sentence (leftmost col-
umn), we show outputs by models trained for various de-
lay targets. For these outputs, each row corresponds to one
source word and represents the emitted words (maybe empty)
after reading this word. The corresponding source and target
words are in the same color for all model outputs.

serve that the simultaneous beam-search cannot
bring as much improvement as it did in the stan-
dard NMT setting. In most cases, the smaller de-
lay the model achieves, the less beam search can
help as it requires longer consecutive WRITE seg-
ments to search for a relatively higher translation
quality. One possible solution is to consider the
beam uncertainty in the agent’s READ/WRITE de-
cisions. We leave this to future work.

7.3 Qualitative Analysis

In this section, we perform a more in-depth analy-
sis using examples from both EN-RU and EN-DE
pairs, in order to have a deeper understanding of

the proposed algorithm and its remaining limita-
tions. We only perform greedy decoding to sim-
plify visualization.
EN→RU Results are shown in Fig 8. Since
English and Russian are the both Subject-Verb-
Object (SVO) languages, the corresponding words
may share the same order in both languages, which
makes simultaneous translation easier. It is clear
that the larger the target delay (AP or CW) is set,
the more words are read before translating the cor-
responding words, which in turn results in better
translation quality. We also note that very early
WRITE commonly causes bad translation. For ex-
ample, for AP=0.3 & CW=2, both the models
choose to WRITE in the very beginning the word
“The”, which is unreasonable since Russian has
no articles, and there is no word corresponding
to it. One good feature of using NMT is that the
more words the decoder READs, the longer history
is saved, rendering simultaneous translation easier.
DE→EN As shown in Fig 1 and 7 (a), where
we visualize the attention weights as soft align-
ment between the progressive input and output
sentences, the highest weights are basically along
the diagonal line. This indicates that our simul-
taneous translator works by waiting for enough
source words with high alignment weights and
then switching to write them.

DE-EN simultaneous translation is likely more
difficult as German often uses Subject-Object-
Verb (SOV) constructions. As shown in Fig 1,
when a sentence (or a clause) starts the agent has
learned such policy to READ multiple steps to ap-
proach the verb (e.g. serviert and gestorben in
Fig 1). Such policy is still limited when the verb
is very far from the subject. For instance in Fig. 7,
the simultaneous translator achieves almost the
same translation with standard NMT except for the

[Gu et al., 2017]26



Building Blocks

• model that predicts translation based on partial input
• policy that decides whether to output translation or wait for more input
• metrics to measure latency and translation quality to optimize policy
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Translation Model

• no need to change model architecture
some authors use unidirectional encoders and greedy search for efficiency [Gu et al., 2017, Cho and Esipova, 2016]

• sentence-level systems perform poorly when input is sentence fragment
• solution: train on sentence fragments [Niehues et al., 2018]

→ simply use prefix of parallel sentences (proportionally to length)
• recent tip: use distilled training data [Sen et al., 2023]

→ more monotonic, so less need to “guess”
Preprint. Under review

For more than 30 years , Josef Winkler has been writing from the heart , telling of the hardships of his childhood and youth .

Josef Winkler schreibt sich seit mehr als 30 Jahren die Nöte seiner Kindheit und Jugend von der Seele .

Seit mehr als 30 Jahren schreibt Josef Winkler aus dem Herzen und erzählt von der Not seiner Kindheit und Jugend .

Source

Distilled Target

Real Target

Figure 2: A sampled pair together with its real target from the distilled data of the base-AT model.
Chunks annotated in the same colors are approximately aligned with each other.
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Figure 3: Complexity C(d) (↑ more complex), faithfulness F (d) (↓ more faithful), training BLEU,
and reordering score (↑ more monotonic alignment) of different distilled sets.

We also investigate how the relative ordering of words in the source and target sentences is changed
during distillation. We use the fuzzy reordering score proposed in Talbot et al. (2011). A larger
fuzzy reordering score indicates the more monotonic alignments. As shown in Fig 3 (c), the distilled
data has significantly less reordering compared to the real parallel sentences, and the distilled data
from a weaker AT teacher is more monotonic than a stronger AT teacher. We also show a randomly
sampled example in Fig. 2 where compared to the real translation, the AT distilled target is much
more monotonically aligned to the source sentence. This has potential benefits in that these simpler
reordering patterns may be easier to learn for NAT models, but also disadvantages in that it may
prevent NAT models from learning complex reordering patterns.

4.3 ANALYSIS OF DISTILLATION STRATEGIES

In §4.2, we have shown that decoding with an AT model reduces the conditional entropy of
the parallel data set, which mitigates multi-modality in the output data. But does the decoding
method of the AT model affect this change in the data set? We also investigate different de-
coding strategies when creating distilled data, using the base Transformer model as the teacher
and the vanilla NAT model as the student. In Tab. 3, four decoding methods are presented: ran-
dom sampling, random sampling within the top-10 candidates, beam search, and greedy decod-
ing. With the same AT model, the performance of the NAT model differs widely depending
on the decoding approach, where distillation with beam search results in the best performance.

Decoding Method C(d) F (d) BLEU

sampling 3.623 3.354 6.6
sampling (Top 10) 2.411 2.932 14.6
greedy 1.960 2.959 18.9
beam search 1.902 2.948 19.5

Table 3: Comparisons of decoding methods.

We can see that beam search or greedy decoding can
reduce the complexity of the real data the most while
maintaining high faithfulness. In contrast, sampling
based decoding methods less aggressively reduce the
modes in the output sequence. This finding is in con-
cert with Ott et al. (2018), who demonstrate that be-
cause beam search approximately selects the most
probable translation, it effectively reduces diversity
in the output translations compared to sampling or
the true distribution.

4.4 DISTILLED DATA V.S. NAT MODELS

We next examine the relationship between the NAT students and distilled training data from different
AT models. In Fig. 4, we demonstrate results for the NAT models listed in §4.1. We use the test
set performance on real data as a simple metric to measure the capacity of the NAT model and
arrange the subfigures in an increasing order of the performance (left-to-right, top-to-bottom). The
results in the figure demonstrate that, interestingly, weaker NAT students prefer distilled data with

7

[Zhou et al., 2019]
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Policy

actions
• simplest action space:

• read a source token
• write a target token

• more complex policies can allow overwriting past decisions

policy

• policy can be learned as function of state (input read so far / output produced so far)
[Grissom II et al., 2014, Gu et al., 2017]

• simple heuristic policies can work

29



Heuristic Policy: Wait-k [Ma et al., 2019]

1 read k source tokens
2 write a target token, then read the next source token
3 repeat 2 until we reach EOS (in source)
4 write target tokens until we produce EOS

STACL: Simultaneous Translation with Implicit Anticipation and
Controllable Latency using Prefix-to-Prefix Framework ∗

Mingbo Ma1,3 Liang Huang1,3 Hao Xiong2 Renjie Zheng3 Kaibo Liu1,3 Baigong Zheng1

Chuanqiang Zhang2 Zhongjun He2 Hairong Liu1 Xing Li1 Hua Wu2 Haifeng Wang2

1Baidu Research, Sunnyvale, CA, USA
2Baidu, Inc., Beijing, China

3Oregon State University, Corvallis, OR, USA
{mingboma, lianghuang, xionghao05, hezhongjun}@baidu.com

Abstract
Simultaneous translation, which translates
sentences before they are finished, is use-
ful in many scenarios but is notoriously dif-
ficult due to word-order differences. While
the conventional seq-to-seq framework is only
suitable for full-sentence translation, we pro-
pose a novel prefix-to-prefix framework for si-
multaneous translation that implicitly learns
to anticipate in a single translation model.
Within this framework, we present a very sim-
ple yet surprisingly effective “wait-k” policy
trained to generate the target sentence concur-
rently with the source sentence, but always k
words behind. Experiments show our strat-
egy achieves low latency and reasonable qual-
ity (compared to full-sentence translation) on
4 directions: zh↔en and de↔en.

1 Introduction

Simultaneous translation aims to automate simul-
taneous interpretation, which translates concur-
rently with the source-language speech, with a de-
lay of only a few seconds. This additive latency
is much more desirable than the multiplicative 2×
slowdown in consecutive interpretation.

With this appealing property, simultaneous in-
terpretation has been widely used in many scenar-
ios including multilateral organizations (UN/EU),
and international summits (APEC/G-20). How-
ever, due to the concurrent comprehension and
production in two languages, it is extremely chal-
lenging and exhausting for humans: the num-
ber of qualified simultaneous interpreters world-
wide is very limited, and each can only last for
about 15-30 minutes in one turn, whose error rates
grow exponentially after just minutes of interpret-
ing (Moser-Mercer et al., 1998). Moreover, lim-

∗ M.M. and L.H. contributed equally; L.H. conceived
the main ideas (prefix-to-prefix and wait-k) and directed the
project, while M.M. led the implementations on RNN and
Transformer. See example videos, media reports, code, and
data at https://simultrans-demo.github.io/.

President Bush met with Putin in Moscow
Bùshí 
૲Ջ 
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௛ᕹ 
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 ࣁ
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ឭේᑀ 
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yǔ 
Ө 
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Pǔjīng 
ฦՂ 
Putin

huìwù 
տร 
meet

pr
ed
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tio

n

read

write

Source side →

Target side  →

Figure 1: Our wait-k model emits target word yt given
source-side prefix x1... xt+k−1, often before seeing
the corresponding source word (here k=2, outputing
y3=“met” before x7=“huı̀wù”). Without anticipation, a
5-word wait is needed (dashed arrows). See also Fig. 2.

ited memory forces human interpreters to rou-
tinely omit source content (He et al., 2016). There-
fore, there is a critical need to develop simultane-
ous machine translation techniques to reduce the
burden of human interpreters and make it more ac-
cessible and affordable.

Unfortunately, simultaneous translation is also
notoriously difficult for machines, due in large part
to the diverging word order between the source
and target languages. For example, think about
simultaneously translating an SOV language such
as Japanese or German to an SVO language such
as English or Chinese:1 you have to wait un-
til the source language verb. As a result, exist-
ing so-called “real-time” translation systems resort
to conventional full-sentence translation, causing
an undesirable latency of at least one sentence.
Some researchers, on the other hand, have noticed
the importance of verbs in SOV→SVO translation

1 Technically, German is SOV+V2 in main clauses, and
SOV in embedded clauses; Mandarin is a mix of SVO+SOV.
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Measuring Latency

a simplified measure of lag:

LAGg(x, y) =
1

|y|

|y|∑
t=1

g(t)− (t− 1)

g(t): how many source words have we read at time step t?
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Measuring Latency

getting rid of two simplifications:
• we don’t average lag over all positions y,

but only until we have read full source:

τg(|x|) = min{t|g(t) = |x|}

• if |x| ̸= |y|, take into account length ratio

using the first 3 source words, etc; see Fig. 3. More
formally, its g(t) is defined as follows:

gwait-k(t) = min{k + t− 1, |x|} (6)

For this policy, the cut-off point τgwait-k(|x|) is ex-
actly |x| − k + 1 (see Fig. 14). From this step on,
gwait-k(t) is fixed to |x|, which means the remain-
ing target words (including this step) are generated
using the full source sentence, similar to conven-
tional MT. We call this part of output, y≥|x|−k, the
“tail”, and can perform beam search on it (which
we call “tail beam search”), but all earlier words
are generated greedily one by one (see Appendix).
Test-Time Wait-k. As an example of test-
time prefix-to-prefix in the above subsection, we
present a very simple “test-time wait-k” method,
i.e., using a full-sentence model but decoding it
with a wait-k policy (see also Fig. 2(c)). Our ex-
periments show that this method, without the an-
ticipation capability, performs much worse than
our genuine wait-k when k is small, but gradually
catches up, and eventually both methods approach
the full-sentence baseline (k =∞).

4 New Latency Metric: Average Lagging

Beside translation quality, latency is another cru-
cial aspect for evaluating simultaneous translation.
We first review existing latency metrics, highlight-
ing their limitations, aand then propose our new
latency metric that address these limitations.

4.1 Existing Metrics: CW and AP
Consecutive Wait (CW) (Gu et al., 2017) is the
number of source words waited between two target
words. Using our notation, for a policy g(·), the
per-step CW at step t is CWg(t) = g(t)−g(t−1).
The CW of a sentence-pair (x,y) is the average
CW over all consecutive wait segments:

CWg(x,y) =

∑|y|
t=1CWg(t)∑|y|
t=1 1CWg(t)>0

=
|x|∑|y|

t=1 1CWg(t)>0

In other words, CW measures the average
source segment length (the best case is 1 for word-
by-word translation or our wait-1 and the worst
case is |x| for full-sentence MT). The drawback
of CW is that CW is local latency measurement
which is insensitive to the actual lagging behind.

Another latency measurement, Average Propor-
tion (AP) (Cho and Esipova, 2016) measures the
proportion of the area above a policy path in Fig. 1:

Source→

Target→

1 2 3 4 5 6 7 8 9 10

Source→

Target→

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 4: Illustration of our proposed Average Lagging
latency metric. The left figure shows a simple case
when |x| = |y| while the right figure shows a more
general case when |x| 6= |y|. The red policy is wait-
4, the yellow is wait-1, and the thick black is a policy
whose AL is 0.

APg(x,y) =
1

|x| |y|
∑|y|

t=1 g(t) (7)

AP has two major flaws: First, it is sensitive
to input length. For example, consider our wait-1
policy. When |x| = |y| = 1, AP is 1, and when
|x| = |y| = 2, AP is 0.75, and eventually AP
approaches 0.5 when |x| = |y| → ∞. However,
in all these cases, there is a one word delay, so
AP is not fair between long and short sentences.
Second, being a percentage, it is not obvious to
the user the actual delays in number of words.

4.2 New Metric: Average Lagging
Inspired by the idea of “lagging behind the ideal
policy”, we propose a new metric called “average
lagging” (AL), shown in Fig. 4. The goal of AL
is to quantify the degree the user is out of sync
with the speaker, in terms of the number of source
words. The left figure shows a special case when
|x| = |y| for simplicity reasons. The thick black
line indicates the “wait-0” policy where the de-
coder is alway one word ahead of the encoder and
we define this policy to have an AL of 0. The diag-
onal yellow policy is our “wait-1” which is always
one word behind the wait-0 policy. In this case,
we define its AL to be 1. The red policy is our
wait-4, and it is always 4 words behind the wait-0
policy, so its AL is 4. Note that in both cases, we
only count up to (but including) the cut-off point
(indicated by the horizontal yellow/red arrows, or
10 and 7, resp.) because the tail can be generated
instantly without further delay. More formally, for
the ideal case where |x = |y|, we can define:

ALg(x,y) =
1

τg(|x|)

τg(|x|)∑
t=1

g(t)− (t− 1) (8)

Average Lag (AL) [Ma et al., 2019]:

ALg(x, y) =
1

τg(|x|)

τg(|x|)∑
t=1

g(t)− (t− 1) · |x|
|y|
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Trading Off Latency and Translation Quality
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Figure 5: Translation quality against latency metrics (AL and CW) on German-to-English simultaneous transla-
tion, showing wait-k and test-time wait-k results, full-sentence baselines, and our adaptation of Gu et al. (2017)
(I:CW=2; H:CW=5; �:CW=8), all based on the same Transformer. FI:full-sentence (greedy and beam-search).
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Figure 6: Translation quality against latency metrics on English-to-German simultaneous translation.
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Figure 7: Translation quality against latency on Chinese-to-English simultaneous translation.
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Figure 8: Translation quality against latency on English-to-Chinese, with encoder catchup (see Appendix A).

⋆I:full-sentence (greedy and beam-search).

[Ma et al., 2019]
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Policies Allowing Corrections: Re-translation

• with corrections, we match (final) quality of sentence-level system
• effect even larger in SLT when transcript is updated
• frequent corrections lead to ‘flicker’ and poor user experience
• simplest policy: re-translate each fragment, allowing unlimited corrections

some results [Niehues et al., 2018]
system BLEU (EN→ES; tst2010) corrections (words)
trained on sentence-level 26.0 182 000

trained on sentence fragments 25.5 98 000

trained on both 26.0 101 000
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Re-translation: Trading off Flicker, Lag, and Quality

• higher lag, lower flicker: test-time wait-k
• lower BLEU, lower flicker: bias beam search towards prefix:

interpolate between
• probability distribution from model
• probability distribution that assigns 100% probability to prefix

→ interpolation weight controls trade-off

System β k BLEU Translation Lag Normalized Erasure
Baseline 0.0 0 20.40 4.13 2.11
+ Bias 0.5 0 20.03 3.00 0.72
+ Mask-k 0.0 10 20.40 5.98 0.53
+ Both 0.5 5 20.17 4.11 0.12

Table 1: English-to-German results on our TED test set. Translation Lag is the time delay (in seconds) between when
a source word was spoken versus when a corresponding output word was finalized. A word is finalized when the word and
any words before it remain unchanged. Normalized Erasure is measured in number of erased partial target tokens per final
target token. [Arivazhagan et al., 2020] 35



Minimum Bayes Risk Decoding

pr
ob

ab
ilit

y

sentences ordered by similarity
(whatever it means)

mode of the
distribution

cluster of good
translations

with the probability
mass spread among them

[Libovický, 2020]
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Minimum Bayes Risk Decoding

pr
ob

ab
ilit

y

sentences ordered by similarity
(whatever it means)

area with high probability
density, the translation should

sampled from here

[Libovický, 2020]
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Minimum Bayes Risk Decoding

y⋆ = argmin
yi∈Y

∑
yj∈Y

P (yj |x)∆(yi, yj)

• use some user-defined risk function ∆ (here: -BLEU)
• approximate Y via sampling or beam search
• ∆ is not defined in respect to reference, but other hypotheses

→ consensus decoding
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Minimum Bayes Risk Decoding

y⋆ = argmin
yi∈Y

∑
yj∈Y

P (yj |x)∆(yi, yj)

efficiency considerations:

• increasing |Y| leads to empirically better results
→ no beam search curse
→ high computational cost

• produce |Y| hypotheses
• score |Y|2 pairs with metric

• active work on faster approximations [Eikema and Aziz, 2021]:
• conceptually, we can use subsets of |Y| for candidate hypotheses (C) and as

pseudo-references (support S):

y⋆ = argmin
yi∈C

∑
yj∈S

P (yj |x)∆(yi, yj)

• pre-filter candidates C with faster metrics
• reducing |S| less harmful than reducing |C|
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Why Could MBR Decoding Be More Robust?

some pathological translations (like copying source) can amass high average probability over
time, but will be unlike other probable translations.

Analyzing Uncertainty in Neural Machine Translation
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Figure 2. Probability quantiles for tokens in the reference, beam
search hypotheses (k = 5), and sampled hypotheses for the
WMT’14 En-Fr validation set.

translations at training time. We refer the reader to §6.2 for
discussion about how well the model actually fits the data
distribution.

5.3. Uncertainty Causes Large Beam Degradation

In the previous section we observed that repeated sampling
from the model can have a negative impact on BLEU, even
as we find increasingly likely hypotheses. Similarly, we ob-
serve lower BLEU scores for beam 200 compared to beam 5,
consistent with past observations about performance degra-
dation with large beams (Koehn & Knowles, 2017).

Why does the BLEU accuracy of translations found by
larger beams deteriorate rather than improve despite these
sequences having higher likelihood? To answer this ques-
tion we return to the issue of extrinsic uncertainty in the
training data (§3.2) and its impact on the model and search.
One particularly interesting case of noise is when target
sentences in the training set are simply a copy of the source.

In the WMT’14 En-De and En-Fr dataset between 1.1% and
2.0% of the training sentence pairs are “copies” (§3.2). How
does the model represent these training examples and does
beam search find them? It turns out that copies are over-
represented in the output of beam search. On WMT’14
En-Fr, beam search outputs copies at the following rates:
2.6% (beam=1), 2.9% (beam=5), 3.2% (beam=10) and 3.5%
(beam=20).

To better understand this issue, we trained models on the
news-commentary portion of WMT’17 English-German
which does not contain copies. We added synthetic copy
noise by randomly replacing the true target by a copy of the
source with probability pnoise. Figure 3 shows that larger
beams are much more affected by copy noise. Even just 1%
of copy noise can lead to a drop of 3.3 BLEU for a beam
of k = 20 compared to a model with no added noise. For a
10% noise level, all but greedy search have their accuracy
more than halved.

Next, we examine model probabilities at the token-level.
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Figure 3. Translation quality of models trained on WMT’17
English-German news-commentary data with added synthetic copy
noise in the training data (x-axis) tested with various beam sizes
on the validation set.
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Figure 4. Average probability at each position of the output se-
quence on the WMT’14 En-Fr validation set, comparing the refer-
ence translation, beam search hypothesis (k = 5), and copying the
source sentence.

Specifically, we plot the average per position log-probability
assigned by the En-Fr model to each token of: (i) the ref-
erence translation, (ii) the beam search output with k = 5,
and (iii) a synthetic output which is a copy of the source
sentence. Figure 4 shows that the probability of copying the
first source token is very unlikely according to the model
(and actually matches the ground truth rate of copy noise).
However, after three tokens the model switches to almost
deterministic transitions. Because beam search proceeds
in strict left-to-right manner, the copy mode is only reach-
able if the beam is wide enough to consider the first source
word which has low probability. However, once in the
beam, the copy mode quickly takes over. This explains
why large beam settings in Figure 3 are more susceptible
to copy noise compared to smaller settings. Thus, while
larger beam widths are effective in finding higher likelihood
outputs, such sequences may correspond to copies of the
source sentence, which explains the drop in BLEU score
for larger beams. Deteriorating accuracy of larger beams
has been previously observed (Koehn & Knowles, 2017),

[Ott et al., 2018]

MBR decoding reduces the generation of some high-probability deficient translations like
copying and “hallucinations” [Müller and Sennrich, 2021] 39



Minimum Bayes Risk Decoding with Neural Metrics

exciting recent results [Freitag et al., 2022]:
MBR with neural metric as risk function (BLEURT)

• have much lower model probability than beam search outputs
• are significantly better according to human error annotation

30% reduction in mistranslations DE→EN

source Das Lagern auf den Wiesen ist laut Parkordnung untersagt [...]
human Camping on the grassland is omitted according to park ordinance [...]
beam search Storing on the meadows is prohibited according to the park regulations [...]
MBR BLEURT The park rules prohibit camping in the meadows [...]
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Minimum Bayes Risk Decoding: On Sampling Strategies

standard (ancestral) sampling may produce poor hypotheses.
Heuristics to focus on most probable predictions:

• top-k sampling: only sample from k most probable
tokens

• nucleus sampling: only sample from smallest set of
tokens that has cumulative probability mass ≥ p

• epsilon sampling: only sample from tokens whose
probability ≥ ϵ

Epsilon Sampling Rocks: Investigating Sampling Strategies for
Minimum Bayes Risk Decoding for Machine Translation

Markus Freitag
Google Research

freitag@google.com

Behrooz Ghorbani†
OpenAI
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Carnegie Mellon University
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Abstract

Recent advances in machine translation (MT)
have shown that Minimum Bayes Risk (MBR)
decoding can be a powerful alternative to beam
search decoding, especially when combined
with neural-based utility functions. However,
the performance of MBR decoding depends
heavily on how and how many candidates are
sampled from the model. In this paper, we ex-
plore how different sampling approaches for
generating candidate lists for MBR decoding
affect performance. We evaluate popular sam-
pling approaches, such as ancestral, nucleus,
and top-k sampling. Based on our insights
into their limitations, we experiment with the
recently proposed epsilon-sampling (Hewitt
et al., 2022) approach, which prunes away all
tokens with a probability smaller than epsilon,
ensuring that each token in a sample receives a
fair probability mass. Through extensive hu-
man evaluations, we demonstrate that MBR
decoding based on epsilon-sampling signifi-
cantly outperforms not only beam search de-
coding, but also MBR decoding with all other
tested sampling methods across four language
pairs.

1 Introduction

MBR decoding has recently gained attention in
Machine Translation (MT) as a decision rule with
the potential to overcome some of the biases of
beam search decoding in NMT (Eikema and Aziz,
2020; Müller and Sennrich, 2021; Eikema and Aziz,
2021; Freitag et al., 2022a; Fernandes et al., 2022).
While most prior work on MBR decoding for MT
is based on k-best lists obtained via beam search,
Eikema and Aziz (2020) proposed to use an approx-
imation of MBR decoding based on unbiased sam-
pling to overcome the shortcomings of MAP de-
coding. They demonstrated that samples from the

†Work done while working at Google
‡Work done while a Student Researcher at Google
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Figure 1: Sorted next token prediction probabil-
ities for an example sentence from newstest2021
English→German. For simplicity, we plot only the top
30 tokens (out of 32k). The correct token is the second
most likely token (with 19.3% probability). All but five
tokens have a probability of less than 0.02. However,
in aggregate, these low-probability tokens have 21.4%
probability.

NMT model are faithful to the training data statis-
tics, while beam search is not. Freitag et al. (2022a)
experimented with different utility functions and
showed that the sampling-based MBR decoding
approach works well with neural metrics that are
fine-tuned on human judgment, such as BLEURT

and COMET (Sellam et al., 2020; Rei et al., 2020),
significantly outperforming beam search decoding
in an expert-based human evaluation.

In this work, we continue this exploration while
focusing on the sampling approach used for gen-
erating the candidate lists for MBR decoding. We
compare MBR decoding using BLEURT on pop-
ular sampling approaches such as ancestral sam-
pling, nucleus sampling, or k-best sampling and an-
alyze their advantages and disadvantages. Based on
these insights, we explore MBR with the recently-
proposed epsilon-sampling (Hewitt et al., 2022) ap-
proach, which instead of considering only tokens
that fall within an aggregated probability mass (nu-
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[Freitag et al., 2023]

[Freitag et al., 2023] report that MBR with epsilon sampling performs better than other
sampling methods.
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Do Biases of Metrics Affect MBR?

neural metric: COMET

• high correlation with human judgments [Kocmi et al., 2021]

• independent encoding of hyp/ref/src allows re-use: →
better efficiency

observation: more name/number corruptions than with surface-level chrF++ [Amrhein and Sennrich, 2022]

src Schon drei Jahre nach der Gründung verließ Green die Band 1970.
ref Green left the band three years after it was formed, in 1970.
MBRchrF++ Already three years after the foundation, Green left the band in 1970.
MBRCOMET Three years after the creation, Green left the band in 1980 .

src [...] Mahmoud Guemama’s Death - Algeria Loses a Patriot [...], Says President Tebboune.
ref [...] Mahmoud Guemamas Tod - Algerien verliert einen Patrioten [...], sagt Präsident Tebboune.
MBRchrF++ [...] Mahmoud Guemamas Tod - Algerien verliert einen Patriot [...], sagt Präsident Tebboune.
MBRCOMET [...] Mahmud Guemamas Tod - Algerien verliert einen Patriot [...], sagt Präsident Tebboene . 42



Do Biases of Metrics Affect MBR?

F1-score for translation of numbers and named entities (EN→DE)
Numbers Named Entities

reference 93.46 n/a

alternative human 95.66 + 2.20 77.66

beam search 95.73 + 2.27 70.03 - 7.63

MBR bleu 91.37 - 2.09 62.50 -15.16

MBR wmt20-comet-da 89.14 - 4.32 54.17 -23.49

MBR wmt21-comet-mqm 77.10 -16.36 53.31 -24.35

MBR retrain-comet-da 90.17 - 3.29 60.48 -17.18

• MBR has more corruptions than beam search; worse with COMET
• retraining COMET with synthetically corrupted data helps, but gap remains

[Amrhein and Sennrich, 2022]
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Take-home messages

• simple beam search with modest beam size sufficient to find most probable translation...
...but most probable translation is not always good

• common fixes:
• length normalisation
• data cleaning (e.g. no source language text on target side to reduce copy problem)

• decoding becomes more complex if you want to:
• output translations during speaking/typing to minimize latency
• control output (e.g. terminology constraints)

• active research on alternatives to mode-seeking decoding
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