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2 Waves of Unification in Natural Language Processing
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Figure 1: The Transformer - model architecture.
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On Data Scale

some EN-DE parallel corpora:

words  sentences The Hobbit
The Hobbit 100k 5000 1 @
e i e o i e e i
TED talks 3.2M 160000 32 MR
Europarl 50M 2M 500
Opensubtitles  170M 14M 1700

Paracrawl 4300M 280M 43000
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2015-2018: Monolingual and Multilingual Data

backtranslation

generate

k
Guten Morgen!

good morning!
(synthetic data)

train (original data)

self-supervised pre-training
e [ 0

1 1 D
[ S SR S| [ S S
oaegs [0 (] [] [ea] fnsd] [aw] [Ca] fiasa] ] s [r
g 0] [0 =]

multilingual models

1 SE= -

raln>




2019: With Right Hyperparameters, You May Not Need Extra Data
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[Sennrich and Zhang, ACL 2019]

—s— neural MT optimized
—— phrase-based SMT
neural MT baseline
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—
corpus size (English words)

biggest improvements:
= widely-used innovations already help
(tied embeddings, layer
normalization, label smoothing...)
= tune subword vocabulary size
= apply aggressive regularization
(dropout)



Today: Large, Massively Multilingual Models

® Massively multilingual with 50 billion parameters
® Massively multilingual with 6 billion parameters
© Massively multilingual with 400 million parameters
+15 BLEU
+10 BLEU
+5 BLEU
Bilingual Baselines —
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https://ai.googleblog.com/2019/10/exploring-massively-multilingual.html
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Transfer in Multimodal Tasks

Speech Translation



First Wave: Unification of Architectures

automatic speech recognition

Charscer
softmax

Figure 1: Our ASR Transformer-based Architecture.

[Pham et al.

. 2019

sign language translation
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igure 2: A detailed overview of a single layered Sign Language Transformer.
(SE: Spatial Embedding, WE: Word Embedding , PE: Positional Encoding, FF: Feed Forward)

[Camgoz et al., 2020]
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Adapting Transformer to Multimodal Data

simple principle:
we can input speech /visual data as vectors instead of word embeddings

raw waveforms extracted features self-supervised embeddings

(e.g. log-mel filterbanks) (e.g. wav2vec)

Time (s)

[Fayek, 2016]

[Baevski et al., 2020]
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Training Data for End-to-End Speech Translation

corpus language pairs domain segments
Fisher [Post et al., 2013] ES—EN telephone 140k
LibriTrans [Kocabiyikoglu et al., 2018] EN—FR audiobooks 130k
MuST-C [Di Gangi et al., 2019] EN—{DE,ES,FR,IT,NL,PT,RO,RU}  TED talks 250k

— low-resource scenario

...but we typically have training triplets:

=== ] | Good Morning | | Guten Morgen
Speech Transcript Translation
(English) (English) (German)
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Transfer Learning for End-to-End Speech Translation Systems

common solutions: auxiliary tasks in addition to end-to-end model P(T'|X)
[Weiss et al., 2017, Bérard et al., 2018]:

= parameter sharing with ASR system: P(S|X)
= parameter sharing with MT system: P(T'|S)

less common: synthetic training data [Jia et al., 2018]

= use ASR data; create target side via MT

= use MT data; create speech input via text-to-speech (TTS)
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A Word on wav2vec

claim [Baevski et al., 2020]

For ASR, "using just ten minutes of labeled data [...] achieves 4.8[%] WER"

counter [san et al., 2023]

unrealistic for actual low-resource languages:

= relies on large language model (803M tokens; English)
without LM 40% WER
with realistically-sized LM (80k tokens) 24% WER

= relies on similarity between pre-training and test languages (results without LM)

on Gronings and Frisian (Germanic) 44-53% WER
on Besemah and Nasal (Malayo-Polynesian) 62-70% WER
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Transfer Learning for End-to-End Spoken Language Translation Systems

o
=
o

20.0

10.0

BrLeu (EN—DE, MuST-C)

=
o

Espnet NeurST  our baseline

Iiend-to-end system trained from scratch
I1end-to-end system trained with ASR pretraining
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Problems with Reliance on Transcripts

Transcripts are not always available
— many languages have no written form

Questioning assumptions for its own sake
— focus on transfer learning may detract from other considerations
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Revisiting End-to-End Speech Translation from Scratch

[Zhang, Haddow, Sennrich, ICML 2022]
CTC Regularization

. Both Objectives Using Translation For Supervision
© Use translation as CTC labels Ich erzéhle lhnen mal eine Geschichte, dann verstehen Sie mich vielleicht besser.

©  No transcripts are used ( crc Objective ) [ MLEObjective |

Parameterized Distance Penalty (PDP)

o0 Add freedom in local attention modeling Transformer Encoder
Deep Encoder
Parameterized Dist Penalty

Transformer Decoder

Autoregressive Structure

Neural Acoustic Feature Modeling
o Use raw waveform to retain local detall

Stacking & Downsamplmg

Hyperparameter Tuning
o Beam search; Model depth/width

~— Acoustic Features

Using speech-translation pairs alone with no
transcripts
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Revisiting End-to-End Speech Translation from Scratch: Results

System BLEU Avg
NeurST (pretrain-finetune) 22.8 24.9
Baseline 18.1> +30

+ hyperparameter tuning 21.1> +0.7 -

+ PDP (R=512) 21.8 -

+ CTC regularization 22, 09 -

+ neural acoustic model 23. +0.3 25.2

Test performance on MuST-C En-De and average results on the other language pairs
Note all our models are trained with speech-translation pairs alone
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Revisiting End-to-End Speech Translation from Scratch: Results

)

w
S
o

20.0

10.0

BrLeu (EN—DE, MuST-C

0.0

Espnet NeurST  our baseline optimized

liend-to-end system trained from scratch
I end-to-end system trained with ASR pretraining
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More on CTC Regularization

originally developed for monotonic tasks without alignment (handwriting, ASR)

How CTC collapsing works

Final output h e | | o

relatively recent finding that CTC also helps with translation as labels:

= non-autoregressive machine translation [Libovicky and Helcl, 2018]
= autoregressive spoken language translation [zhang et al, 2022]
= autoregressive machine translation (van et al, 2022] 20


https://distill.pub/2017/ctc/

CTC Loss: Transcripts Still Useful if Available

10.0

A
o

13.7
11.7
9.3
4.6 2
2.9

ES—EN ES—PT FR—EN PT—EN FR—ES FR—PT

=
o

Relative BLEU vs. Baseline (TedX)

I1CTC with translation
IICTC with transcript
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Transfer in Multimodal Tasks

Sign Language Translation
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On Sign Languages

Mathias Miiller @bricksdont - Nov 30
Tell me you don't know anything about sign languages, without telling me
you don't know anything about sign languages.

‘\%’ Shower Thoughts @TheWeirdWorld - Nov 30
Sign language not being a universal language was a huge missed

opportunity.

Q n Q 7 &
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Why Sign Language Translation?

= sign language is not universal
— several hundred sign languages worldwide

= “spoken” languages are foreign languages
— no linguistic relation between German Sign Language and German

24



Why Sign Language Translation?

= sign language is not universal
— several hundred sign languages worldwide

= “spoken” languages are foreign languages
— no linguistic relation between German Sign Language and German

sign language research at University of Zurich
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Similarities and Differences to Other Tasks

common with low-resource translation:
training data is sparse, but potential for cross-lingual and cross-task transfer

common with speech translation:
input modality (audio/video) is barrier for transfer

common with some spoken languages:
sign languages have no commonly used and closely aligned “written form”
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Sign Language: Representations

spoken languages:

Good Morning Guten Morgen
Transcript Translation
(English) (English) (German)

sign languages:

." i gg ‘i; ? Guten Morgen

Video Translation
(German Sign Language) (German)

Source: Henrke Maria Barsch. CC BY-NC-5A 200



Sign Language: Representations
,‘i £g ‘i; ? Guten Morgen

Video Translation
(German Sign Language) (German)
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Sign Language: Representations
‘h £E ‘}; GUTEN MORGEN Guten Morgen

Video Glosses Translation
(German Sign Language) (German)
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@)
) | f& \Dﬁﬂ’ Guten Morgen

Video SignWriting Translation
(German Sign Language) (German)
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Sign Language: Representations
' ﬁ & ﬁ il ’ i Guten Morgen

Video Poses Translation
(German Sign Language) (German)
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Sign Language: Representations
' ﬁ & ﬁ il i Guten Morgen

Video Poses Translation

Q
Q
Q

(German Sign Language) (German)

intermediate representations:

= could help end-to-end system as auxiliary task
= could help cascade systems (lower-dimensional than video)

= unlike speech translation, there is no extra data “for free” (ASR/MT)

27



Multi-Task Training for Sign Language Translation

[Zhang, Miiller, Sennrich, ICLR 2023]

goals:

= build optimzed sign language translation system
= measure benefits of multi-task training (using glosses and MT)

= test sign language translation on more challenging dataset

28



Sign Language Datasets with Glosses

Phoenix-2014T CSL-Daily DGS3

[Camgoz et al., 2018] [Zhou et al., 2021] [Hanke et al., 2020]
signers 9 10 330
glosses 1085 2000 8580
domain weather daily life diverse
train segments | 7096 18401 60306
source German Sign Language Chinese Sign Language German Sign Language
target German Chinese German

Phoenix-2014T and CSL-Daily dominate previous work
we are first to attempt end-to-end sign language translation on DGS3

side remark: [Zhou et al., 2021]: Improving Sign Language Translation with Monolingual Data by Sign Back-Translation 29



SLTUnet Architecture

z
=2
[ Feature Extractor j— 2 Visual Encoder
4 CTC Loss MLE Loss
2 i 1
§ e ™ e ™
Sign Video g Shared Encoder Slhaied Deco‘d er
= (autoregressive)
= \ Y, \ J
( Embedding )—é Textual Encoder 1 Gloss or Text
g
B

Gloss or Text

Task Task Tag Input Output Training Objective

Sign2Gloss [2gls] sign video gloss a8 (gloss) 4+ LM (gloss)
Sign2Text [2txt] sign video text a8 (gloss) 4+ LM (text)
Gloss2Text [2txt] gloss text LMUE (text)
Text2Gloss [2gls] text gloss LMEE (gloss)

Text2Text (MT) [2txt] source text target text LM (target) 30




Some Insights from Optimization

biggest improvements over our baseline (PHOENIX-2014T dev):

= CTC regularization (+2.8 BLEU)
= BPE dropout (50%) (+1 BLEU)

= multi-task training (+1 BLEU)
— but extra MT data only helps little (+0.1 BLEU)
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Sign Language Translation Results

30.0 28.4 28.5 |

20.0

BLEU

10.0

0.0

Phoenix-2014T  Phoenix-2014T CSL-Daily CSL-Daily
Cascading End-to-End Cascading End-to-End

1 Baseline [Camgoz et al., 2020]
FBVL-Transfer [Chen et al., 2022]
BISLTUnet (ours)
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Sign Language Translation Results

30.0 28.4 28.5 7

20.0

BLEU

10.0

0.0

Phoenix-2014T  Phoenix-2014T CSL-Daily CSL-Daily DGS-3
Cascading End-to-End Cascading End-to-End End-to-End

1 Baseline [Camgoz et al., 2020]
FBVL-Transfer [Chen et al., 2022]
BISLTUnet (ours)
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DGS-3 Error Analysis

= is this too hard for end-to-end modelling?
not only that: cascade similarly fails

= for cascade, where does it fail?
sign—gloss has WER of 67% (!)

= model shows hints of translation, but majority is hallucinated:

Gold Gloss: MORGEN3 FISCH1 MARKT4 BEKANNT1 $INDEX2
Gold Text: Morgens geht man zum Fischmarkt, der ist bekannt. (/n the morning you go to the fish
market, it's well known.)
SLTUnet Ja, das ist bekannt. (Yes, that is known.)

33



= LoResMT community can (and should) contribute to modalities beyond text

= we can apply our expertise successfully
= interesting challenges to be solved
= many less-privileged languages are not text-based

= knowledge sharing (cross-lingual; cross-task) is workhorse for low-resource MT...
...but it’s encouraging how far we can get with regularization and little data
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Thank you for your attention

Resources

= code for speech translation:
https://github.com/bzhangGo/zero

= code for sign language translation:
https://github.com/bzhangGo/sltunet

I—I_‘Swiss National
this research was funded by Science Foundation

,,,,,,,,,,,,,

35


https://github.com/bzhangGo/zero
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