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2 Waves of Unification in Natural Language Processing

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.
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On Data Scale

some EN-DE parallel corpora:

words sentences The Hobbit

The Hobbit 100k 5000 1

TED talks 3.2M 160000 32

Europarl 50M 2M 500

Opensubtitles 170M 14M 1700

Paracrawl 4300M 280M 43 000

4



2016–2017: Painful Start for Neural MT
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Figure 3: BLEU scores for English-Spanish sys-
tems trained on 0.4 million to 385.7 million
words of parallel data. Quality for NMT starts
much lower, outperforms SMT at about 15 mil-
lion words, and even beats a SMT system with a
big 2 billion word in-domain language model un-
der high-resource conditions.

How do the data needs of SMT and NMT com-
pare? NMT promises both to generalize better (ex-
ploiting word similary in embeddings) and condi-
tion on larger context (entire input and all prior
output words).

We built English-Spanish systems on WMT
data,7 about 385.7 million English words paired
with Spanish. To obtain a learning curve, we used

1
1024 , 1

512 , ..., 1
2 , and all of the data. For SMT, the

language model was trained on the Spanish part of
each subset, respectively. In addition to a NMT
and SMT system trained on each subset, we also
used all additionally provided monolingual data
for a big language model in contrastive SMT sys-
tems.

Results are shown in Figure 3. NMT ex-
hibits a much steeper learning curve, starting with
abysmal results (BLEU score of 1.6 vs. 16.4 for

1
1024 of the data), outperforming SMT 25.7 vs.
24.7 with 1

16 of the data (24.1 million words), and
even beating the SMT system with a big language
model with the full data set (31.1 for NMT, 28.4
for SMT, 30.4 for SMT+BigLM).

7Spanish was last represented in 2013, we used data from
http://statmt.org/wmt13/translation-task.html

Src: A Republican strategy to counter the re-election
of Obama

1
1024

Un órgano de coordinación para el anuncio de
libre determinación

1
512

Lista de una estrategia para luchar contra la
elección de hojas de Ohio

1
256

Explosión realiza una estrategia divisiva de
luchar contra las elecciones de autor

1
128

Una estrategia republicana para la eliminación
de la reelección de Obama

1
64

Estrategia siria para contrarrestar la reelección
del Obama .

1
32

+ Una estrategia republicana para contrarrestar la
reelección de Obama

Figure 4: Translations of the first sentence of
the test set using NMT system trained on varying
amounts of training data. Under low resource con-
ditions, NMT produces fluent output unrelated to
the input.

The contrast between the NMT and SMT learn-
ing curves is quite striking. While NMT is able to
exploit increasing amounts of training data more
effectively, it is unable to get off the ground with
training corpus sizes of a few million words or
less.

To illustrate this, see Figure 4. With 1
1024 of the

training data, the output is completely unrelated to
the input, some key words are properly translated
with 1

512 and 1
256 of the data (estrategia for strat-

egy, elección or elecciones for election), and start-
ing with 1

64 the translations become respectable.

3.3 Rare Words

Conventional wisdom states that neural machine
translation models perform particularly poorly on
rare words, (Luong et al., 2015; Sennrich et al.,
2016b; Arthur et al., 2016) due in part to the
smaller vocabularies used by NMT systems. We
examine this claim by comparing performance on
rare word translation between NMT and SMT
systems of similar quality for German–English
and find that NMT systems actually outperform
SMT systems on translation of very infrequent
words. However, both NMT and SMT systems
do continue to have difficulty translating some
infrequent words, particularly those belonging to
highly-inflected categories.

For the neural machine translation model, we
use a publicly available model8 with the training
settings of Edinburgh’s WMT submission (Sen-
nrich et al., 2016a). This was trained using Ne-

8https://github.com/rsennrich/wmt16-scripts/

31

(English→Spanish)

[Koehn and Knowles, 2017]
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2015–2018: Monolingual and Multilingual Data

backtranslation multilingual models

good morning!
(original data)

Guten Morgen!
(synthetic data) train

generate

Figure 1: A t-SNE projection of the embedding of 74 semantically identical sentences translated across all 6 possible
directions, yielding a total of 9,978 steps (dots in the image), from the model trained on English↔Japanese and
English↔Korean examples. (a) A bird’s-eye view of the embedding, coloring by the index of the semantic sentence.
Well-defined clusters each having a single color are apparent. (b) A zoomed in view of one of the clusters with the same
coloring. All of the sentences within this cluster are translations of “The stratosphere extends from about 10km to about
50km in altitude.” (c) The same cluster colored by source language. All three source languages can be seen within this
cluster.

Figure 2: (a) A bird’s-eye view of a t-SNE projection of an embedding of the model trained on Portuguese→English
(blue) and English→Spanish (yellow) examples with a Portuguese→Spanish zero-shot bridge (red). The large red
region on the left primarily contains the zero-shot Portuguese→Spanish translations. (b) A scatter plot of BLEU scores
of zero-shot translations versus the average point-wise distance between the zero-shot translation and a non-bridged
translation. The Pearson correlation coefficient is −0.42.
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Figure 1: Cross-lingual language model pretraining. The MLM objective is similar to the one of Devlin et al. (2018), but
with continuous streams of text as opposed to sentence pairs. The TLM objective extends MLM to pairs of parallel sentences. To
predict a masked English word, the model can attend to both the English sentence and its French translation, and is encouraged
to align English and French representations. Position embeddings of the target sentence are reset to facilitate the alignment.

4.1 Cross-lingual classification

Our pretrained XLM models provide general-
purpose cross-lingual text representations. Similar
to monolingual language model fine-tuning (Rad-
ford et al., 2018; Devlin et al., 2018) on En-
glish classification tasks, we fine-tune XLMs on a
cross-lingual classification benchmark. We use the
cross-lingual natural language inference (XNLI)
dataset to evaluate our approach. Precisely, we add
a linear classifier on top of the first hidden state of
the pretrained Transformer, and fine-tune all pa-
rameters on the English NLI training dataset. We
then evaluate the capacity of our model to make
correct NLI predictions in the 15 XNLI languages.
Following Conneau et al. (2018b), we also include
machine translation baselines of train and test sets.
We report our results in Table 1.

4.2 Unsupervised Machine Translation

Pretraining is a key ingredient of unsupervised
neural machine translation (UNMT) (Lample
et al., 2018a; Artetxe et al., 2018). Lample et al.
(2018b) show that the quality of pretrained cross-
lingual word embeddings used to initialize the
lookup table has a significant impact on the per-
formance of an unsupervised machine translation
model. We propose to take this idea one step
further by pretraining the entire encoder and de-

coder with a cross-lingual language model to boot-
strap the iterative process of UNMT. We explore
various initialization schemes and evaluate their
impact on several standard machine translation
benchmarks, including WMT’14 English-French,
WMT’16 English-German and WMT’16 English-
Romanian. Results are presented in Table 2.

4.3 Supervised Machine Translation

We also investigate the impact of cross-lingual
language modeling pretraining for supervised ma-
chine translation, and extend the approach of Ra-
machandran et al. (2016) to multilingual NMT
(Johnson et al., 2017). We evaluate the impact
of both CLM and MLM pretraining on WMT’16
Romanian-English, and present results in Table 3.

4.4 Low-resource language modeling

For low-resource languages, it is often benefi-
cial to leverage data in similar but higher-resource
languages, especially when they share a signifi-
cant fraction of their vocabularies. For instance,
there are about 100k sentences written in Nepali
on Wikipedia, and about 6 times more in Hindi.
These two languages also have more than 80% of
their tokens in common in a shared BPE vocabu-
lary of 100k subword units. We provide in Table 4
a comparison in perplexity between a Nepali lan-

[CONNEAU and Lample, 2019]

[Sennrich et al., 2016, Vaswani et al., 2017]
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2019: With Right Hyperparameters, You May Not Need Extra Data
[Sennrich and Zhang, ACL 2019]
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Today: Large, Massively Multilingual Models

https://ai.googleblog.com/2019/10/exploring-massively-multilingual.html
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First Wave: Unification of Architectures

automatic speech recognition sign language translation

pitch features. To generate labels for sequence-to-sequence
ASR models, we used the SentencePiece toolkit to train and
generate 4000 different byte-pair-encoding (BPE) for all
models.

Modeling In this year’s evaluation, we have used only
sequence-to-sequence encoder-decoder ASR models. We
have investigated two different network architectures:
long short-term memory (LSTM) and the Transformer.
We follow the network architecture in [3] to construct
LSTM-based models which consist of 6 bidirectional layers
of 1024 units for the encoder and 2 unidirectional layers
for the decoder. For the transformer-based models, we
adopted the implementation presented in [4]. Basically,
these transformer-based models take the audio features
as the inputs, concatenate 4 consecutive features before
combining them with the position information and putting
them to the self-attention blocks. The architecture of our
ASR transformer-based models is described in Figure 1,
with totally 32 blocks for the encoder and 12 blocks for the
decoder. To effectively train this deep architecture, beside
other standard regularization techniques, we employed
Stochastic Layers in our models. For more details, please
refer to [3, 4].

Figure 1: Our ASR Transformer-based Architecture.

3. Segmentation and Normalization
The output of Automatic Speech Recognition (ASR) sys-
tems is traditionally generated without the information about
punctuation which segments the streams into sentences or
phrases, and casing (for example proper names or words that
are supposed to be upper cased). More importantly, the ba-
sic sequential units in ASR - utterances are not on the same
scale with sentences. On the other hand, machine transla-

tion models are conscious about these phenomenons which
leads to the mismatch in the interface between ASR and MT.
Monolingual translation models are developed as a solution
to smooth out the transition between ASR and MT.

As the name suggests, these models restore the casing
and punctuation information from the ASR transcriptions.
The training data, on the other hand, can be created from ex-
isting monolingual text corpus of the recognized language.
The corpus is first randomly shuffled into randomized seg-
ments, each of which contains from 20 to 30 words. For
the sequence-to-sequence model which learns to restore the
casing information, the model inputs are the segments with
the punctuations being removed and the words being lower-
cased. The target side is simplified into a set of output units
including casing to be restored and punctuation to be added.
Starting from the input text, we replace each word with its
casing (U for upper-cased or L for lower-cased). The punc-
tuation marks that follow the word in the text (pre-tokenized)
are directly attached to U or L.

The training data is the combination of the EPPS cor-
pus, the News-Commentary corpus and the paraCrawl cor-
pus (which we filtered using model pre-training as for Ma-
chine Translation). The model configuration is a Transformer
model with 12 layers with the base model size of 512 and the
inner-size of the feed-forward layers is 1024.

It is crucial that the decoding process requires the sliding
window technique as described in [5]. The data is “cloned”
with segments of length 10 starting with every word in the
data. The monolingual translation model then generates the
target features (U or L with punctuations) for these segments.
The final step is to aggregate the information from the cloned
segments. The punctuation mark is added to the final se-
quence if there is at least one punctuation generated after the
particular word in any of the cloned sequences. If different
punctuation marks are predicted, we take the most frequent
one. Finally, if the punctuation mark is an end of sentence
punctuation mark ”.”,”!”,”?”, we also start a new segment.
The segmented test data with case and punctuation informa-
tion is passed on to the machine translation system. The
main difference between TED Talks and How2 test sets is
that, the latter is pre-segmented by the organizer. Therefore,
re-segmentation is only required for TED Talks.

4. Machine Translation
Data Preprocessing. The training data includes the indo-
main corpora for TED translation (TED Talks) and How2
video translation tasks. We utilize the ability of the large
neural models to translate between multiple languages [6, 7]
by mixing the English-German and English-Portuguese data
into one single training corpus. The English-German data
is comprised of the Europarl, News Commentary, Rapid,
Common crawl and OpenSubtitles. The data is enhanced
by the massive amount of Paracrawl which was filtered by
pre-training a translation model to identify the low quality
sentence pairs [8]. Moreover, we pre-trained a German-

[Pham et al., 2019]

Connectionist Temporal Classification

Linear Linear Linear

CNNCNNCNN

Self-Attention

FF FF FF

Add & Normalize

LinearLinearLinear

(Masked) Self-Attention

Add & Normalize

FF FF FF

Encoder-Decoder Attention

Add & Normalize

Softmax Softmax Softmax

Add & Normalize

Linear Linear Linear

Softmax Softmax Softmax

Add & Normalize

SE WE

SLRT

SLTT

𝐼𝑇𝐼𝑡𝐼1

𝑓𝑇𝑓𝑡

𝑝(𝑔𝑛) 𝑝(𝑔𝑁)𝑝(𝑔1)

መ𝑓𝑡 መ𝑓𝑇

𝑓1

መ𝑓1
PE(1) PE(𝑡) PE(𝑇) PE(1) PE(𝑢) PE(𝑈)

𝑧𝑡 𝑧𝑇𝑧1

𝑝(𝑤𝑢+1) 𝑝(< 𝑒𝑜𝑠 >)𝑝(𝑤1)

ℎ𝑢 ℎ𝑈ℎ0

𝑤𝑈𝑤𝑢< 𝑏𝑜𝑠 >

𝑚𝑢 𝑚𝑈𝑚0

ෝ𝑚𝑢 ෝ𝑚𝑈ෝ𝑚0

Figure 2: A detailed overview of a single layered Sign Language Transformer.
(SE: Spatial Embedding, WE: Word Embedding , PE: Positional Encoding, FF: Feed Forward)

initial process and then try to solve the problem as a text-to-
text translation task [12, 9]. Camgoz et al. utilized a state-
of-the-art CSLR method [41] to obtain sign glosses, and
then used an attention-based text-to-text NMT model [44] to
learn the sign gloss to spoken language sentence translation,
p(S|G) [9]. However, in doing so, this approach introduces
an information bottleneck in the mid-level gloss represen-
tation. This limits the network’s ability to understand sign
language as the translation model can only be as good as the
sign gloss annotations it was trained from. There is also an
inherent loss of information as a sign gloss is an incomplete
annotation intended only for linguistic study and it therefore
neglects many crucial details and information present in the
original sign language video.

The second group of methods focus on translation from
the sign video representations to spoken language with no
intermediate representation [9, 38]. These approaches at-
tempt to learn p(S|V) directly. Given enough data and a
sufficiently sophisticated network architecture, such mod-
els could theoretically realize end-to-end SLT with no need
for a human-interpretable information that act as a bottle-
neck. However, due to the lack of direct supervision guid-
ing sign language understanding, such methods have signif-
icantly lower performance than their counterparts on cur-
rently available datasets [9].

To address this, we propose to jointly learn p(G|V) and
p(S|V), in an end-to-end manner. We build upon trans-
former networks [70] to create a unified model, which
we call Sign Language Transformers (See Figure 2). We
train our networks to generate spoken language sentences
from sign language video representations. During training,
we inject intermediate gloss supervision in the form of a
CTC loss into the Sign Language Recognition Transformer
(SLRT) encoder. This helps our networks learn more mean-

ingful spatio-temporal representations of the sign without
limiting the information passed to the decoder. We em-
ploy an autoregressive Sign Language Translation Trans-
former (SLTT) decoder which predicts one word at a time
to generate the spoken language sentence translation.

3.1. Spatial and Word Embeddings
Following the classic NMT pipeline, we start by embed-

ding our source and target tokens, namely sign language
video frames and spoken language words. As word embed-
ding we use a linear layer, which is initialized from scratch
during training, to project a one-hot-vector representation of
the words into a denser space. To embed video frames, we
use the SpatialEmbedding approach [9], and propagate each
image through CNNs. We formulate these operations as:

mu = WordEmbedding(wu)

ft = SpatialEmbedding(It)
(1)

where mu is the embedded representation of the spoken
language word wu and ft corresponds to the non-linear
frame level spatial representation obtained from a CNN.

Unlike other sequence-to-sequence models [61, 27],
transformer networks do not employ recurrence or convo-
lutions, thus lacking the positional information within se-
quences. To address this issue we follow the positional en-
coding method proposed in [70] and add temporal ordering
information to our embedded representations as:

f̂t = ft + PositionalEncoding(t)

m̂u = mu + PositionalEncoding(u)

where PositionalEncoding is a predefined function which
produces a unique vector in the form of a phase shifted sine
wave for each time step.

[Camgoz et al., 2020]
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Adapting Transformer to Multimodal Data

simple principle:
we can input speech/visual data as vectors instead of word embeddings

raw waveforms extracted features self-supervised embeddings
(e.g. log-mel filterbanks) (e.g. wav2vec)

[Fayek, 2016]
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Figure 1: Illustration of our framework which jointly learns contextualized speech representations
and an inventory of discretized speech units.

on labeled data with a Connectionist Temporal Classification (CTC) loss [14, 4] to be used for
downstream speech recognition tasks (§ 3)

Previous work learned a quantization of the data followed by a contextualized representations with a
self-attention model [5, 4], whereas our approach solves both problems end-to-end. Masking parts
of the input with Transformer networks for speech has been explored [4, 26], but prior work relies
either on a two-step pipeline or their model is trained by reconstructing the filter bank input features.
Other related work includes learning representations from auto-encoding the input data [52, 11] or
directly predicting future timesteps [8].

Our results show that jointly learning discrete speech units with contextualized representations
achieves substantially better results than fixed units learned in a prior step [4]. We also demonstrate
the feasibility of ultra-low resource speech recognition: when using only 10 minutes of labeled data,
our approach achieves word error rate (WER) 4.8/8.2 on the clean/other test sets of Librispeech.
We set a new state of the art on TIMIT phoneme recognition as well as the 100 hour clean subset
of Librispeech. Moreover, when we lower the amount of labeled data to just one hour, we still
outperform the previous state of the art self-training method of [42] while using 100 times less
labeled data and the same amount of unlabeled data. When we use all 960 hours of labeled data from
Librispeech, then our model achieves 1.8/3.3 WER (§ 4, § 5).

2 Model

Our model is composed of a multi-layer convolutional feature encoder f : X 7! Z which takes as
input raw audio X and outputs latent speech representations z1, . . . , zT for T time-steps. They are
then fed to a Transformer g : Z 7! C to build representations c1, . . . , cT capturing information from
the entire sequence [9, 5, 4]. The output of the feature encoder is discretized to qt with a quantization
module Z 7! Q to represent the targets (Figure 1) in the self-supervised objective (§ 3.2). Compared
to vq-wav2vec [5], our model builds context representations over continuous speech representations
and self-attention captures dependencies over the entire sequence of latent representations end-to-end.

Feature encoder. The encoder consists of several blocks containing a temporal convolution fol-
lowed by layer normalization [1] and a GELU activation function [21]. The raw waveform input to
the encoder is normalized to zero mean and unit variance. The total stride of the encoder determines
the number of time-steps T which are input to the Transformer (§ 4.2).

Contextualized representations with Transformers. The output of the feature encoder is fed to
a context network which follows the Transformer architecture [55, 9, 33]. Instead of fixed positional
embeddings which encode absolute positional information, we use a convolutional layer similar
to [37, 4, 57] which acts as relative positional embedding. We add the output of the convolution
followed by a GELU to the inputs and then apply layer normalization.

Quantization module. For self-supervised training we discretize the output of the feature encoder
z to a finite set of speech representations via product quantization [25]. This choice led to good

2

[Baevski et al., 2020]
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Training Data for End-to-End Speech Translation

corpus language pairs domain segments
Fisher [Post et al., 2013] ES→EN telephone 140k
LibriTrans [Kocabiyikoglu et al., 2018] EN→FR audiobooks 130k
MuST-C [Di Gangi et al., 2019] EN→{DE,ES,FR,IT,NL,PT,RO,RU} TED talks 250k

→ low-resource scenario

...but we typically have training triplets:

(        )
Rescue: ASR/MT Pretraining and ST Finetuning 

Speech
(English)

Guten Morgen
Translation 
(German)

Good Morning
Transcript
(English)

Inaguma et al., 2020; Wang et al., 2020; Zhang et al., 2020; Zhao et al., 2021

Step 1: pretrain ST encoder/decoder with ASR/MT using transcripts

Step 2: finetune the model on direct speech-translation pairs

3

12



Transfer Learning for End-to-End Speech Translation Systems

common solutions: auxiliary tasks in addition to end-to-end model P (T |X)

[Weiss et al., 2017, Bérard et al., 2018]:

• parameter sharing with ASR system: P (S|X)

• parameter sharing with MT system: P (T |S)

less common: synthetic training data [Jia et al., 2018]

• use ASR data; create target side via MT
• use MT data; create speech input via text-to-speech (TTS)

13



A Word on wav2vec

claim [Baevski et al., 2020]

For ASR, ”using just ten minutes of labeled data [...] achieves 4.8[%] WER“

counter [San et al., 2023]

unrealistic for actual low-resource languages:

• relies on large language model (803M tokens; English)
without LM 40% WER
with realistically-sized LM (80k tokens) 24% WER

• relies on similarity between pre-training and test languages (results without LM)
on Gronings and Frisian (Germanic) 44-53% WER
on Besemah and Nasal (Malayo-Polynesian) 62-70% WER

14



Transfer Learning for End-to-End Spoken Language Translation Systems

Espnet NeurST our baseline
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end-to-end system trained from scratch
end-to-end system trained with ASR pretraining
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Problems with Reliance on Transcripts

Transcripts are not always available
→ many languages have no written form

Questioning assumptions for its own sake
→ focus on transfer learning may detract from other considerations

16



Revisiting End-to-End Speech Translation from Scratch
[Zhang, Haddow, Sennrich, ICML 2022]

Improving E2E ST Towards Training From Scratch

6

Stacking & Downsampling

Transformer Encoder
  Deep Encoder
  Parameterized Dist Penalty

Transformer Decoder
   Autoregressive Structure

CTC Objective MLE Objective

Both Objectives Using Translation For Supervision 
Ich erzähle Ihnen mal eine Geschichte, dann verstehen Sie mich vielleicht besser.

Acoustic Features

CTC Regularization
○ Use translation as CTC labels
○ No transcripts are used

Parameterized Distance Penalty (PDP)
○ Add freedom in local attention modeling

Neural Acoustic Feature Modeling 
○ Use raw waveform to retain local details

Hyperparameter Tuning
○ Beam search; Model depth/width

Using speech-translation pairs alone with no 
transcripts

17



Revisiting End-to-End Speech Translation from Scratch: ResultsImproved Results: Different Techs Are Complementary

7

System BLEU Avg

NeurST (pretrain-finetune) 22.8 24.9

Baseline 18.1 -

  + hyperparameter tuning 21.1 -

  + PDP (R=512) 21.8 -

  + CTC regularization 22.7 -

  + neural acoustic model 23.0 25.2+0.3

+3.0

+0.9
+0.7

Test performance on MuST-C En-De and average results on the other language pairs
Note all our models are trained with speech-translation pairs alone
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Revisiting End-to-End Speech Translation from Scratch: Results

Espnet NeurST our baseline optimized
0.0
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end-to-end system trained from scratch
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More on CTC Regularization

originally developed for monotonic tasks without alignment (handwriting, ASR)

relatively recent finding that CTC also helps with translation as labels:

• non-autoregressive machine translation [Libovický and Helcl, 2018]

• autoregressive spoken language translation [Zhang et al., 2022]

• autoregressive machine translation [Yan et al., 2022]

https://distill.pub/2017/ctc/

20
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CTC Loss: Transcripts Still Useful if Available

ES→EN ES→PT FR→EN PT→EN FR→ES FR→PT
0.0

5.0

10.0

15.0

20.0

1.4

4.9 4.6

2.9

5.4
4.2

6.4

9.7

11.7

9.3

13.7

11.9
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ed
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CTC with translation
CTC with transcript

results from [Zhang et al., 2023a]
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Transfer in Multimodal Tasks

Sign Language Translation

22



On Sign Languages

23



Why Sign Language Translation?

• sign language is not universal
→ several hundred sign languages worldwide

• “spoken” languages are foreign languages
→ no linguistic relation between German Sign Language and German

sign language research at University of Zurich
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Why Sign Language Translation?

• sign language is not universal
→ several hundred sign languages worldwide

• “spoken” languages are foreign languages
→ no linguistic relation between German Sign Language and German

sign language research at University of Zurich
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Similarities and Differences to Other Tasks

common with low-resource translation:
training data is sparse, but potential for cross-lingual and cross-task transfer

common with speech translation:
input modality (audio/video) is barrier for transfer

common with some spoken languages:
sign languages have no commonly used and closely aligned “written form”

25



Sign Language: Representations

spoken languages:

(        )
Rescue: ASR/MT Pretraining and ST Finetuning 

Speech
(English)

Guten Morgen
Translation 
(German)

Good Morning
Transcript
(English)

Inaguma et al., 2020; Wang et al., 2020; Zhang et al., 2020; Zhao et al., 2021

Step 1: pretrain ST encoder/decoder with ASR/MT using transcripts

Step 2: finetune the model on direct speech-translation pairs

3

sign languages:

? Guten Morgen

Video Translation
(German Sign Language) (German)

source: Henrike Maria Bartsch. CC BY-NC-SA 3.026



Sign Language: Representations

? Guten Morgen

Video Translation
(German Sign Language) (German)

intermediate representations:

• could help end-to-end system as auxiliary task
• could help cascade systems (lower-dimensional than video)
• unlike speech translation, there is no extra data “for free” (ASR/MT)
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Sign Language: Representations

GUTEN MORGEN Guten Morgen

Video Glosses Translation
(German Sign Language) (German)

intermediate representations:

• could help end-to-end system as auxiliary task
• could help cascade systems (lower-dimensional than video)
• unlike speech translation, there is no extra data “for free” (ASR/MT)
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Sign Language: Representations

Guten Morgen

Video SignWriting Translation
(German Sign Language) (German)

intermediate representations:

• could help end-to-end system as auxiliary task
• could help cascade systems (lower-dimensional than video)
• unlike speech translation, there is no extra data “for free” (ASR/MT)
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Sign Language: Representations

Guten Morgen

Video Poses Translation
(German Sign Language) (German)

intermediate representations:

• could help end-to-end system as auxiliary task
• could help cascade systems (lower-dimensional than video)
• unlike speech translation, there is no extra data “for free” (ASR/MT)
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Sign Language: Representations

Guten Morgen

Video Poses Translation
(German Sign Language) (German)

intermediate representations:

• could help end-to-end system as auxiliary task
• could help cascade systems (lower-dimensional than video)
• unlike speech translation, there is no extra data “for free” (ASR/MT)
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Multi-Task Training for Sign Language Translation
[Zhang, Müller, Sennrich, ICLR 2023]

goals:

• build optimzed sign language translation system
• measure benefits of multi-task training (using glosses and MT)
• test sign language translation on more challenging dataset

28



Sign Language Datasets with Glosses

Phoenix-2014T CSL-Daily DGS3
[Camgoz et al., 2018] [Zhou et al., 2021] [Hanke et al., 2020]

signers 9 10 330
glosses 1085 2000 8580
domain weather daily life diverse
train segments 7096 18401 60306
source German Sign Language Chinese Sign Language German Sign Language
target German Chinese German

Phoenix-2014T and CSL-Daily dominate previous work
we are first to attempt end-to-end sign language translation on DGS3

side remark: [Zhou et al., 2021]: Improving Sign Language Translation with Monolingual Data by Sign Back-Translation 29



SLTUnet Architecture

Sign Video Shared Encoder Shared Decoder
(autoregressive)

Visual Encoder

Textual Encoder

Feature Extractor

Embedding

Gloss or Text

Gloss or Text

A
dd task and position inform

ation

CTC Loss MLE Loss

Task Task Tag Input Output Training Objective

Sign2Gloss [2gls] sign video gloss αLCtc(gloss) + LMle(gloss)
Sign2Text [2txt] sign video text αLCtc(gloss) + LMle(text)
Gloss2Text [2txt] gloss text LMle(text)
Text2Gloss [2gls] text gloss LMle(gloss)

Text2Text (MT) [2txt] source text target text LMle(target) 30



Some Insights from Optimization

biggest improvements over our baseline (PHOENIX-2014T dev):

• CTC regularization (+2.8 BLEU)
• BPE dropout (50%) (+1 BLEU)
• multi-task training (+1 BLEU)

→ but extra MT data only helps little (+0.1 BLEU)
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Sign Language Translation Results

Phoenix-2014T
Cascading

Phoenix-2014T
End-to-End

CSL-Daily
Cascading

CSL-Daily
End-to-End
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Sign Language Translation Results
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DGS-3 Error Analysis

• is this too hard for end-to-end modelling?
not only that: cascade similarly fails

• for cascade, where does it fail?
sign→gloss has WER of 67% (!)

• model shows hints of translation, but majority is hallucinated:

Gold Gloss: MORGEN3 FISCH1 MARKT4 BEKANNT1 $INDEX2
Gold Text: Morgens geht man zum Fischmarkt, der ist bekannt. (In the morning you go to the fish

market, it’s well known.)
SLTUnet Ja, das ist bekannt. (Yes, that is known.)

33



Summary

• LoResMT community can (and should) contribute to modalities beyond text
• we can apply our expertise successfully
• interesting challenges to be solved
• many less-privileged languages are not text-based

• knowledge sharing (cross-lingual; cross-task) is workhorse for low-resource MT...
...but it’s encouraging how far we can get with regularization and little data
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Thank you for your attention

Resources
• code for speech translation:

https://github.com/bzhangGo/zero

• code for sign language translation:
https://github.com/bzhangGo/sltunet

this research was funded by
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