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Abstract

In this thesis I explore Bayesian models for word alignment, how they can be im-
proved through joint annotation transfer, and how they can be extended to parallel
texts in more than two languages. In addition to these general methodological de-
velopments, I apply the algorithms to problems from sign language research and
linguistic typology.

In the first part of the thesis, I show how Bayesian alignment models estimated
with Gibbs sampling are more accurate than previous methods for a range of dif-
ferent languages, particularly for languages with few digital resources available—
which is unfortunately the state of the vast majority of languages today. Further-
more, I explore how different modifications to the models and learning algorithms
affect alignment accuracy.

Then, I show how part-of-speech annotation transfer can be performed jointly
with word alignment to improve word alignment accuracy. I apply these models
to help annotate the Swedish Sign Language Corpus (SSLC) with part-of-speech
tags and to investigate patterns of polysemy across the languages of the world.

Finally, I present a model for multilingual word alignment that learns an in-
termediate representation of the text. This model is then used with a massively
parallel corpus containing translations of the New Testament to explore word order
features in 1,001 languages.
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Glossary

bitext a parallel text with two languages, see Section 2.1.

colexification the same word is used for expressing different concepts in a language
(Francois 2008), see Section 4.5.

conjugate prior in Bayesian statistics, a distribution H is a conjugate prior for a distri-
bution G if, when applying Bayes’ theorem with H as prior and G as likelihood
function, the posterior distribution is of the same family as H. See Section 2.4.1.

fertility the number of words in the target language linked to a given word in the source
language, see Section 2.3.4.

isolating languages that use only one morpheme per word, as opposed to synthetic
languages.

mixing in Markov Chain Monte Carlo (MCMC) models, a measure of how independent
each sample is from the preceding samples. Slow mixing could cause a model to be
useless in practice, because samples are strongly correlated with the initial value
even after a long time.

non-parametric in non-parametric Bayesian modeling, one uses infinite-dimensional dis-
tributions where the number of parameters grows with the number of observations,
such as the Dirichlet Process (Section 2.4.4) or the Pitman-Yor Process (PYP)
(Section 2.4.5).

posterior in Bayesian statistics, a probability distribution representing the belief in a
hypothesis after taking some evidence into account, see Section 2.4.1.

precision ratio of identifications that are correct, with respect to some gold standard
classification (dependent only on the number of guesses made by the algorithm,
not the total number of instances, unlike recall).

prior in Bayesian statistics, a probability distribution representing the belief in a hy-
pothesis before taking some evidence into account, see Section 2.4.1.

recall ratio of correct identifications to the total number of instances, with respect to
some gold standard classification (dependent on the total number of instances,
unlike precision).
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support the support of a distribution is the set of elements with non-zero probability.

synthetic languages that use multiple morphemes per word, as opposed to isolating
languages.

token a word token is a particular instance of a word type.

type a word type is an abstract entity that may have a number of instances (tokens).
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Acronyms

AER Alignment Error Rate.

CRP Chinese Restaurant Process.
EM Expectation-Maximization.
HMM Hidden Markov Model.

ITG Inverse Transduction Grammar.

MCMC Markov Chain Monte Carlo.
MLE Maximum Likelihood Estimate.

MT Machine Translation.

NLP Natural Language Processing.
NMI Normalized Mutual Information.

NT New Testament.

PoS Part of Speech.

PYCRP Pitman-Yor Chinese Restaurant Process.

PYP Pitman-Yor Process.

SIC Stockholm Internet Corpus.
SMT Statistical Machine Translation.
SSL Swedish Sign Language.

SSLC Swedish Sign Language Corpus.
SUC Stockholm-Umea Corpus.

WALS World Atlas of Language Structures.
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1. Introduction

In this thesis, I approach a number of seemingly very different problems: finding parts
of speech in Swedish Sign Language and 1,001 other languages around the world, inves-
tigating word order in all those languages, and determining whether or not they make
a difference between hands and arms. The common theme that unites these various
topics is the method: word alignment of parallel texts. This is one of those tasks that
seem trivial to the casual observer, and fiendishly difficult to those of us who tried to
implement it on a computer. The problem is this: given translated sentences in different
languages, mark which words correspond to each other across these languages.

Apart from the applications mentioned above, much of this thesis will be spent devel-
oping and exploring the core methods for word alignment, in particular the recent field
of word alignment with Bayesian models using MCMC type methods for inference, par-
ticularly Gibbs sampling (DeNero et al. 2008; Mermer & Saraglar 2011; Gal & Blunsom
2013). While previous work has shown MCMC to be an appealing alternative to the
Expectation-Maximization (EM) algorithms most commonly used for word alignment,
the few existing studies are relatively narrow, and I saw a need for a broader study of
Bayesian word alignment models. In a nutshell, Bayesian models make it possible to
easily bias the solutions towards what is linguistically plausible, for instance, by dis-
couraging an excessive amount of postulated translation equivalents for each word, or
encouraging a realistic frequency distribution of words in the intermediate representa-
tion used in the multilingual alignment algorithm of Chapter 5. Given a suitable choice
of prior distributions, Gibbs sampling can be easily applied even though the function
describing the total probability under the model is very complex.

My main research questions can be expressed in the following way:

1. What are the characteristics of MCMC algorithms for word alignment, how should
they be applied in practice, and how do they compare to other methods?

2. How can word alignment be performed in massively parallel corpora comprising
hundreds or thousands of different languages?

3. How can word-aligned massively parallel corpora be used to perform investigations
in linguistic typology?

4. Can word alignment and annotation transfer be performed jointly in order to
improve the accuracy of these tasks?



1. Introduction

1.1. How to read this thesis

Very few people will enjoy reading this thesis in its entirety. This is inevitable when
several different aspects of linguistics and applied statistics are squeezed into one volume.
On a positive note, such diversity means that there is at least something here for a wider
range of people. What follows is a quick tour of the thesis for a number of different
possible readers.

The computational linguist Chapter 2 contains the necessary background for under-
standing my own contributions, including word alignment models, Bayesian modeling
with MCMC inference, and annotation projection. Depending on your specialization,
you may want to read selected parts of this chapter. In Chapter 4 I show how word
alignment and annotation transfer can be used to benefit each other, and in Chapter 5
I present new models for multilingual word alignment that are scalable to massively
parallel texts with hundreds of languages.

The typologist Chapter 4 describes how linguistic annotations can be transferred au-
tomatically from one language (such as English) to another (such as the dying Wantoat
language of Papua New Guinea, or any of a thousand others) through the use of par-
allel texts. This kind of transfer, along with the multilingual word alignment methods
from Chapter 5, can help giving answers to typological questions. Not perfect answers,
necessarily, but answers that are processed more quickly and based on larger samples
than could be arrived at without it. I demonstrate this in two case studies, on lexical
typology (Section 4.5) and word order typology (Section 5.3).

The sign language researcher Your interest is likely limited to Section 4.3, which
describes the use of a transcribed corpus of Swedish Sign Language (SSL) with a trans-
lation into written Swedish to transfer part-of-speech tag information from Swedish to
SSL, resulting (with manual corrections) in the first sign language corpus automatically
annotated with part-of-speech tags.

The computer scientist/statistician If you are not already familiar with Bayesian
models, MCMC methods and how they are used in Natural Language Processing (NLP),
then Section 2.5.2 on the mathematical background of this study should be of interest,
as well as the practical applications of these in Chapter 4 and Chapter 5. This is however
not a thesis in mathematics or computer science, so my aim is not to develop new tools
or theories in statistics or machine learning.

1.2. Contributions

My contributions in this thesis are of three different types: algorithms, applications
and evaluations. These are summarized here, with references to which of the research
questions listed above they answer.



1.3. Relation to other publications

1.2.1. Algorithms

The main algorithmic innovations are to be found in Chapter 5, where a method for
multilingual word alignment through an interlingua is developed (Question 2), and in
Chapter 4, where word alignment and PoS annotation transfer are performed jointly
(Question 4).

1.2.2. Applications

Word alignment in itself is not very exciting to most people. With this in mind, I have
tried to apply my word alignment algorithms to some problems selected from different
areas of linguistics and NLP. Most of these applications would also be possible using
methods for word alignment other than the ones I explore, and the purpose is not mainly
to test my own algorithms (for that, see below), but to inspire others to use word-aligned
parallel texts in their research. One application concerns annotating text (or transcrip-
tions) with part of speech information (Question 4), particularly for languages with few
computer-readable resources available. Chapter 4 uses a corpus of 1,142 New Testament
translations to explore this, and Section 4.3 contains a more detailed study with Swedish
Sign Language. There are also applications from linguistic typology (Question 3), one
concerning word order typology (Section 5.3) and another lexical typology (Section 4.5).

1.2.3. Evaluations

Chapters 3 and 4 contain thorough evaluations for a number of different language pairs,
and establish the competitiveness of Bayesian word alignment models for a broader set
of languages than have been previously explored, as well as providing a solid baseline for
the additional experiments performed in these chapters (Question 1). Furthermore, in
my experiments I consistently publish the statistics required for computing most of the
many word alignment evaluation measures in use. I hope this will create a precedent for
others to make results from different studies more easily comparable in the future.

1.3. Relation to other publications

Parts of the work presented in this thesis have been published previously, or are currently
in the process of being published. This section gives a list of these publications and their
relations to this thesis.

e [ use my Stagger PoS tagger throughout Chapter 4 and Chapter 5, since it is the
most accurate one available for Swedish and Icelandic. In hindsight, I somewhat
regret that I did not use the Icelandic version (developed in cooperation with
Hrafn Loftsson) to provide one more source language in the annotation transfer
experiments of Chapter 4.

— Ostling, R. (2013). Stagger: An open-source part of speech tagger for Swedish.
North European Journal of Language Technology, 3, 1-18
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— Loftsson, H. & Ostling, R. (2013). Tagging a morphologically complex lan-
guage using an averaged perceptron tagger: The case of Icelandic. In Proceed-
ings of the 19th Nordic Conference on Computational Linguistics (NODAL-
IDA 2013), NEALT Proceedings Series (pp. 105-119). Oslo, Norway

e Chapter 4 partially overlaps with two articles and one book chapter, the first
covering Section 4.3, which has been accepted at the time of writing and should be
published by the time this thesis is defended, the next covering Section 4.5, which
has been accepted for publication and is undergoing final revisions, and finally an
article currently under review that covers Sections 4.1.3 and 4.2:

— Ostling, R., Bérstell, C., & Wallin, L. (2015). Enriching the Swedish Sign
Language Corpus with part of speech tags using joint Bayesian word align-
ment and annotation transfer. In Proceedings of the 20th Nordic Conference
on Computational Linguistics (NODALIDA 2015). In press

- Ostling, R. (forthcoming). Studying colexification through parallel corpora. In
P. Juvonen & M. Koptjevskaja-Tamm (Eds.), Lezico- Typological Approaches
to Semantic Shifts and Motivation Patterns in the Lezicon. Berlin: De Gruyter
Mouton

— Ostling, R. (submitted a). A Bayesian model for joint word alignment and
part-of-speech transfer

e The multilingual alignment algorithm from Chapter 5 was briefly summarized in a
2014 article, and the application from Section 5.3 in another article that is presently
under review.

— Ostling, R. (2014). Bayesian word alignment for massively parallel texts. In
Proceedings of the 14th Conference of the European Chapter of the Associ-
ation for Computational Linguistics, volume 2: Short Papers (pp. 123-127).
Gothenburg, Sweden: Association for Computational Linguistics

— Ostling, R. (submitted b). Word order typology through multilingual word
alignment



2. Background

This chapter is aimed at giving the reader sufficient background knowledge to understand
the later chapters of this thesis, where my own results are presented.

Since my work is focused on Bayesian methods for word alignment, this chapter will
mainly cover word alignment and relevant models from Bayesian statistics. Chapter 4
uses annotation transfer as part of the word alignment process, so at the end of this
chapter there is also an introduction to previous work on annotation projection based
on word alignments.

2.1. Parallel texts

A parallel text contains translation-equivalent texts in two or more languages. In the
most frequently studied case of two languages, this is referred to as a bitext—originally
a term from translation theory (Harris 1988).

The translation process involved in producing a parallel text can be complicated, and
the ideal scenario involving a single source text that has been translated consistently
into a number of other languages is often far from reality. De Vries (2007) discusses the
long and convoluted translation history of the Bible, which serves as a good introduction
to just how complex the creation of a parallel text can be. For reasons of simplicity,
most research in NLP takes a more abstract view and does not attempt to model the
full complexity of the translation process.

In order to give the reader unfamiliar with the field a sense of the size and character-
istics of parallel corpora available to researchers, I will now describe in passing some of
the larger parallel corpora commonly used. Figure 2.1 shows the size in both words and
number of translations for the following corpora:

Hansards
The proceedings (Hansards) of the Canadian parliament in English and French is
an important early parallel corpus, although it contains only two languages.

Europarl
The Europarl corpus (Koehn 2005) has been used extensively, particularly in the
Machine Translation (MT) field. It contains the proceedings of the European
Parliament in 21 of the official languages of the European Union.

UN documents
The United Nations Parallel Text corpus (Franz et al. 2013) contains a large num-
ber of United Nations documents in six different languages, totaling roughly 250
million words per language.

ot
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Figure 2.1.: Size in words and number of translations for some important parallel cor-
pora. Note that for the New Testament corpus the number of translations is
different from the number of languages, since some languages have multiple
translations. For the other corpora, these figures are equal.

OpenSubtitles
The OpenSubtitles corpus is part of the OPUS corpus collection (Tiedemann 2012)
and contains movie subtitles in 59 different languages, translated by volunteers
from the OpenSubtitles project.!

New Testament
The New Testament of the Christian Bible has been widely translated, and while
there is no standard Bible corpus used for NLP research, several authors have used
the Bible as a parallel corpus (Cysouw & Wiélchli 2007). The corpus used in the
present work contains 1,142 translations in 1,001 languages.

The top left corner in Figure 2.1 is occupied by the type of corpora traditionally used
in MT and other research, and, as such, contain a small number of languages but a fairly
large amount of text for each language. In contrast, the lower right corner contains what
Cysouw & Walchli (2007) term massively parallel corpora, here represented by the New
Testament. This type of corpus is characterized by a large number of languages, with
a relatively small amount of text in each. Massively parallel corpora are less useful
for training MT systems, but since they contain a large portion of the roughly 7,000
languages of the world (Lewis et al. 2014) they have been successfully used for studies
in linguistic typology (Cysouw & Wilchli 2007).

1http://www.opensubtitles.org/



2.2. Alignment

2.2. Alignment

In practice, for the type of applications mentioned, one most often needs access to an
aligned parallel text, where corresponding parts of each translation are matched to each
other. This can be done at multiple levels, which are often treated as separate problems
and solved using different approaches:

Document linking
A necessary step before attempting to align a parallel text is to identify which
documents in a collection are actually translations of each other. If the required
metadata is not available, automatic methods may be applied, although this issue
will not be addressed further here.

Sentence alignment
The first alignment step is typically sentence alignment, where the parallel text
is divided into chunks with one or a few sentences per language. Efficient and
accurate algorithms for this problem exist, but are beyond the scope of this work.
The interested reader is referred to the survey of Tiedemann (2011, chapter 4). In
some cases, such as the verses of the New Testament, units other than sentences
might be used.

Word alignment
Given a sentence alignment, the next level of matching is normally done at the
word level. Word alignment is a much more challenging problem than sentence
alignment and will be discussed further in Section 2.3.

Morpheme alignment
For synthetic languages, where words may consist of multiple morphemes, word
alignment becomes insufficient. Much current research focuses on how to identify
and align morphemes rather than whole word forms, which will also be discussed
in Section 2.3.

Document linking and sentence alignment are rather well-defined, since (for any rea-
sonable translation) documents and sentences in one language normally have direct cor-
respondences in the other, although sometimes this relationship is not one-to-one. At
the word and morpheme levels, on the other hand, the situation is less clear. Several
factors speak against even trying to align words or morphemes:

1. words in idiomatic expressions often have no direct counterparts
2. translators can choose different wordings to express roughly the same meaning
3. grammatical morphemes (free or bound) differ widely across languages.

Given this, why even bother trying to align words or morphemes? In spite of all the cases
where there is no clear alignment, there are also many examples of the opposite. In most
cases, there would be little doubt about which word is used to translate a concrete noun



2. Background

like tiger. Empirically, a large number of applications have demonstrated the usefulness
of word (and to some extent morpheme) alignment, but it is important to keep in mind
that there are many cases where word alignment is not very well-defined.

Och & Ney (2003) make this uncertainty an integral part of their evaluation metric,
the Alignment Error Rate (AER), which assumes that the gold standard annotation
data contains three types of relations between source and target language words: sure
link, no link and possible link. Although this division and the AER measure in particular
have been criticized on the grounds that they correlate poorly with machine translation
quality (Fraser & Marcu 2007; Holmqvist & Ahrenberg 2011), this division has been
widely used when evaluating word alignment systems. Vilar et al. (2006), on the other
hand, argue that AER is an adequate measure of alignment quality as such, but that
word alignments are not necessarily a very useful concept for phrase-based machine
translation.

It should also be mentioned that given the existence of some very clear alignments,
on the one hand, and questionable or even unalignable words, on the other, there is a
tradeoff between precision and recall for word alignment. In some applications the recall
does not have to be very high, which means that uncertain alignments can be sacrificed
in order to improve precision. Liang et al. (2006, figure 2) and Cysouw et al. (2007,
figs. 3-5) demonstrate how this tradeoff can look in practice.

The issues surrounding word alignment become even more severe when we move be-
yond two languages. One way to generalize is by considering each pair of languages, so
word wiA in language A is aligned to wf in language B, w,f in language C, and so on.
Beyond the impracticality of quadratic complexity in the number of translations, this
also introduces the possibility of inconsistent solutions. For instance, given the A-B and
A-C alignments above, what if in the B-C alignment wJB was linked to w,% for some
K # k?

An alternative to pairwise alignments is to use a common representation, to which
every translation is aligned. I borrow the term interlingua from the field of MT to
denote this common representation, since the goal is to use a language-independent
semantic representation. Because each word is only aligned once there is no risk of
inconsistency, and complexity is linear in the number of translations. The question is of
course how to find a suitable interlingua, and this problem is dealt with in Chapter 5.

2.3. Word alignment

Most of the research on word alignment focuses on unsupervised algorithms. There are
two important reasons for this: lack of annotated data, and the already-acceptable per-
formance of unsupervised algorithms. Given that the world has roughly 7,000 languages,
there are around 25 million language pairs. Manually word-aligned data that could be
used for training supervised word alignment algorithms exists only for an exceedingly
small subset of these pairs, whereas massively parallel corpora containing over a thou-
sand languages exist (see Section 2.1) that could readily be used with unsupervised
alignment algorithms.
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2.3.1. Co-occurrence based models

The word alignment problem is commonly understood as this: for each word in a parallel
text, find the word(s)—if any—in the other language(s) that correspond to this word.
That is, we want to align words on a token basis.

A somewhat simpler problem is to align word types, so that we can find that e.g.
English dog tends to correspond more strongly to the German Hund ‘dog’ than to
Katze ‘cat.’” This is essentially the problem of lexicon construction, which has received
considerable attention on its own (Wu & Xia 1994; Fung & Church 1994).

Given a way of obtaining translational similarity between words types in a parallel
text, various heuristics have been tried to transform these into token-level word links
(Gale & Church 1991; Melamed 2000). However, in the evaluation of Och & Ney (2003),
such methods are much less accurate than the probabilistic IBM models.

Part of this difference can be explained by the fact that co-occurrence based models,
unlike the IBM models (except model 1), do not take the structure of sentences into
account. Regularities in word order and the fact that words are normally aligned to
one or a few other words provide strong constraints on which alignments are likely, so
models that ignore this information tend to suffer.

2.3.2. Multilingual word alignment

Most work in word alignment has been carried out on bitexts alignment, where there are
exactly two translations. There is however a growing number of parallel corpora with
more than two translations, sometimes reaching up to over a thousand translations (see
Section 2.1).

Given that bitext alignment is already a quite developed field, perhaps the most
natural way of dealing with multilingual parallel texts is to perform pairwise alignment
using established methods. Some authors have suggested ways of exploiting additional
language for bitext alignment, primarily through various uses of bridge languages. There
has also been a separate line of research focusing on aligning word and morpheme types
in massively parallel texts. We now turn to a discussion of some important examples of
approaches to multilingual word alignment.

2.3.2.1. Bridge languages

Several authors have used bridge languages (sometimes called pivot languages) to im-
prove bitext alignment. The basic idea is that by aligning language A to each of languages
X; (i =1,2,...), and aligning these languages to language B, we obtain information
that is useful when aligning A and B.

Borin (2000) uses the union of alignment links discovered through the A-B alignment,
on the one hand, and links discovered from the chained A-X;—B alignments, on the other.
He concludes that little precision is lost using this method, while there is a substantial
gain in recall.

Kumar et al. (2007) introduce a general probabilistic method for combining word align-
ments and test it by combining alignments through different bridge languages. Although
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AER scores are worse, they show increased Statistical Machine Translation (SMT) per-
formance using their method.?

Filali & Bilmes (2005) use a method where the languages of interest, A and B, are
in the middle of an alignment chain X—A-B-Y. Given alignments X—A and B-Y,
candidate alignments between A and B can be weighted by how reasonable an alignment
between X and Y they produce. One way to interpret this is as a kind of inverted bridge
language alignment (where the languages of interests are the bridge); another is to see the
aligned words of X as “tags” to words in A and words in Y as tags to their corresponding
words in B. In light of this interpretation, the method is similar to the PoS-enhanced
alignment method of Toutanova et al. (2002).

2.3.2.2. Sampling-based alignment

Lardilleux & Lepage (2009) presented a model that learns translation equivalent words
and phrases from a multilingual parallel text by sampling small subsets of the text and
looking for phrases that occur in the same contexts. Later work (Lardilleux et al. 2011,
2012) improved and extended this model to produce word alignments. Unfortunately
neither of these works evaluated word alignment accuracy, but did demonstrate that SMT
performance increases if IBM model 4 alignments are combined with their method.

2.3.2.3. Word alignment in massively parallel texts

Massively parallel texts (see Section 2.1) have been used in linguistic typology for auto-
matically comparing some features across a large sample of languages. This specialized
type of data (hundreds of languages) and applications (typological investigations) has
caused alignment of massively parallel texts to develop mostly independently of SMT-
directed word alignment research. While the methods used have so far been rather
primitive, the range of applications is impressive and a strong motivation in my own
search for improved methods of multilingual word alignment. Examples of this can be
found in Cysouw et al. (2007) and Dahl (2007), who use simple co-occurrence statis-
tics for pairwise alignment. The other works in the collection introduced by Cysouw &
Wilchli (2007) are also worth consulting for an overview of how massively parallel texts
have been applied to crosslinguistic studies.

The only truly multilingual method I am aware of (Mayer & Cysouw 2012) only per-
forms word type alignment, carried out by clustering word types from different languages
based on co-occurrence statistics. Although both methods and applications are different,
this makes it similar to the work of Lardilleux & Lepage (2009).

2 Kumar et al. (2007) claim in their summary that “Despite its simplicity, the system combination
gives improvements in alignment and translation performance,” but the improvement in alignment
they refer to is relative to the case where there is no bitext between the languages of interest, only
indirectly through bridge languages (Shankar Kumar, p.c.).

10
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2.3.3. The IBM models

The IBM models (Brown et al. 1993) have been perhaps the most successful family of
bitext word alignment models, and in particular the GIZA++ implementation (Och &
Ney 2003) has been frequently used in MT and other applications over the last decade.

Brown et al. (1993) present five models (generally referred to as “model 1”7 through
“model 5”), of which the first two will be discussed here along with the similar Hidden
Markov Model (HMM)-based model of Vogel et al. (1996). Models 3, 4 and 5 contain
more complex models of sentence structure, but the advantages offered over the HMM
model are fairly small, particularly when the latter is extended with a fertility model.
Therefore, the higher IBM models will not be described here.

2.3.3.1. Fundamentals

At their core, the IBM models are asymmetric translation models that assume the target
language (usually denoted f, think French or foreign) text is generated by the source
language (usually denoted e, think English) side of a bitext. Target language tokens f;
are assumed to be generated by either one source language token e; or by the special
NULL word, which represents target words that have no correspondence in the source
sentence. Alignment variables a; are used to indicate that f; was generated by e,;. This
is illustrated in Figure 2.2.

Since the models are used for word alignment rather than actual translation, both e
and f are observed quantities; only the alignment a needs to be inferred.

£, £ £ f, £ £ £ fs
... da regnete es Feuer und Schwefel vom Himmel ...

/Y mT asT asT a7T asT
NULL ... it rained fire and brimstone from heaven ...

€ €2 es €y es € €7

Figure 2.2.: Variables in the IBM alignment models.

All of the IBM models have in common that word correspondences are modeled using
categorical distributions conditional on the source token: p¢(fle). The models differ
mainly with respect to how word order is modeled, and whether or not the number of
target tokens generated by a single source token is taken into account.

2.3.3.2. Model 1

According to IBM model 1, sentences are generated from the source language sentence
e to the target language sentence f in the following way:

1. Choose a target sentence length J from p;(J|I).

2. For each j =1...J, choose a; with probability p,(a;) =1/1.

11
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3. For each j =1...J, choose f; with probability p;(f;|eq; ).

The probability of a sentence under this model is

J
P(f,ale) =p(J|I) H Pa(a;)pe(fjl€a;) (2.1)

<

(filea;) (2.2)

which means that all permutations of the target sentence are assumed to be equally
likely, and only the translation probabilities matter. If one wants to allow unaligned
target words, a NULL token can simply be appended to each source language sentence.
In practice, p;(J|I) is assumed to be constant and does not affect learning alignments.
The assumption that all alignments are equally likely is problematic, since it only holds
if word order is arbitrary. In practice, the word order in one language of a bitext tends
to be a strong predictor for the word order in the other language. Empirical evaluations
have demonstrated that the performance of model 1 is quite poor (Och & Ney 2003).

2.3.3.3. Model 2

Model 2 is identical to model 1, except that it conditions translation alignment links
on the position of the target word and the lengths of the source and target sentences,
pa(il, I, J). This leads to the following generative story:

1. Choose a target sentence length J from p;(J|I).
2. For each j =1...J, choose a; with probability p,(a;|j, I, J).
3. For each j =1...J, choose f; with probability p;(f;|es; ).

The total probability of a sentence then becomes

J
P(f,ale) = pi(J|I) H (ajl3, 1, )pe(filea;) (2.3)

While this at least provides a rudimentary model of word order, conditioning on the
absolute position and the lengths of both sentences introduces problems due to data
sparsity. For this reason, several authors have explored variants of model 2 with word
order models that use fewer parameters (Och & Ney 2003; Dyer et al. 2013).

2.3.3.4. HMM model

While not one of the original IBM models, the HMM model of Vogel et al. (1996) is
frequently used in combination with them as a natural extension of model 2. Instead
of using a distribution of absolute target location, the HMM model uses a distribution

12
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over the relative position with respect to the previous word’s alignment, p;(m/|I), where
m = a; — aj—1. The probability under this model is

J

P(f,ale) = pi(J|) [ [ pj(ej — aj1 [ D)pe filea;) (2.4)
j=1

This helps to model the fact that sentences do not tend to be reordered at the word
level, but rather at e.g. the phrase level. At phrase boundaries, there may be long
jumps, but within phrases the jumps tend to be short. Model 2, with its assumption of
independence between a; for different j is unable to capture this. Evaluations have shown
the HMM model to be much better than models 1 and 2, somewhat better than model
3, and somewhat worse than models 4 and 5 (Och & Ney 2003; Gal & Blunsom 2013).
Extensions to the HMM model have been developed that further improve performance,
to the point of rivaling the best of the IBM models (Toutanova et al. 2002).

2.3.4. Fertility

The IBM models and derived models all assume one-to-many alignment links, where
a source word can generate zero or more target words. There is a great amount of
regularity to be exploited in how many target words a given source word generates (its
fertility), and different authors have devised a wide variety of methods to do this.

For instance, if the German Unabhdngigkeitserkldrung ‘declaration of independence’ is
aligned to the three English words declaration of independence in a particular instance,
the fertility of the token Unabhdngigkeitserkldrung is 3. In another instance, it might
be aligned to independence declaration, and the fertility then is 2. In a good German-
English alignment, we can expect Unabhdingigkeitserkldrung to have a fertility of 2 or
3 often, whereas other values are highly unlikely. Most models with fertility tend to
include some distribution ps(¢$|e) conditioned on the source word, so that the fertility
of each word can be learned.

Previously, IBM models 3-5 (Brown et al. 1993) used fertility parameters from categor-
ical distributions, Toutanova et al. (2002) extended the HMM model with a fertility-like
parameter, and Zhao & Gildea (2010) used a Poisson-distributed fertility parameter.
Gal & Blunsom (2013) mostly followed the original IBM models, but used hierarchical
Pitman-Yor priors (see Section 2.4.6) for the fertility distributions. In all cases, a size-
able improvement in alignment quality over the corresponding non-fertility model was
reported.

2.3.5. Structural constraints

The alignment models described so far only model very general and language-agnostic
aspects of language, such as word correspondences and elementary representations of
word order. In some cases, further analysis of the text may be available, which could
provide valuable information for an alignment model. Some models have been proposed
using either PoS tags or syntactic parses to guide word alignment.

13
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2.3.5.1. PoS tags

Toutanova et al. (2002) used PoS-annotated bitexts and simply introduced an additional
PoS translation factor py(ts|t.) conditioning the target tag (¢y) on the source tag (t.),
into the HMM model of Vogel et al. (1996). They obtained improved word alignments,
although the gain over the baselines (IBM model 4 and the HMM model) diminished
with increasing training data size.

2.3.5.2. ITGs and syntactic parses

Inverse Transduction Grammars (ITGs) (Wu 1997) assume that both versions of a par-
allel sentence are generated from the same abstract parse tree, where the order of con-
stituents may be reversed in one language in productions.

Yamada & Knight (2001) presented a model which assumes that the target language
sentence is generated from the phrase structure parse tree of the source sentence through
a series of transformations. They reported better performance than IBM model 5 on a
small English-Japanese alignment task.

Cherry & Lin used a dependency parse tree for one of the languages in a bitext
to define alignment constraints (Cherry & Lin 2003; Lin & Cherry 2003b) based on
phrasal cohesion (Fox 2002). This constraint was later used as a feature in a supervised
discriminative alignment model (Cherry & Lin 2006b), and by Wang & Zong (2013) who
used it in an unsupervised generative model.

Cherry & Lin (2006a) compared the constraints provided by ITGs and phrasal co-
hesion, finding that ITG constraints were less rarely broken, although when they used
the constraints for selecting among alignments in a co-occurrence based model it turned
out that the constraint based on phrasal cohesion made up for this by rejecting more
incorrect hypotheses, leading to a higher F; score. Further gains (though minor) can
be obtained by combining the two constraints. This result is somewhat at odds with an
earlier study by Zhang & Gildea (2004), who found that ITG-aided alignment was more
accurate than the method of Yamada & Knight (2001), which was based on phrase struc-
ture grammar. Cherry & Lin (2006a) explained this divergence by the fact that their
own method used the same alignment model, just with different constraints, whereas the
models compared by Yamada & Knight (2001) differ considerably in other ways.

Lopez & Resnik (2005), on the other hand, evaluated an extension to the HMM
model (Vogel et al. 1996) that considers the dependency tree distance between aligned
tokens, but this did not lead to any improvement in their evaluation using three different
language pairs.

2.3.6. Stemming and lemmatization

Given that data sparsity is a particularly serious problem for word alignment (or in-
deed any NLP task) with synthetic languages, several researchers have used stemming,
lemmatization or similar techniques to normalize the large number of word forms present
in such languages. Ideally, a full lemmatization where the canonical citation form of each
token is identified would be available, and Bojar & Prokopové (2006) have shown that

14
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the error rate can be cut in half in Czech-English word alignment by using lemmas rather
than full word forms.

Accurate lemmatization software is however only available for a small number of lan-
guages, and less accurate techniques have also been used. One possibility is to use
annotation transfer so that it is sufficient with a lemmatizer or stemmer for one of the
bitext languages, using e.g. the method of Yarowsky et al. (2001). However, Fraser &
Marcu (2005) found that a very simple method works even better (for some suffixing
languages): cutting off all but the first four letters of each word.

2.3.7. EM inference

Brown et al. (1993) and most of their successors used the EM algorithm (Dempster
et al. 1977) to learn the parameters of the IBM alignment models. The EM algorithm
finds locally optimal parameters of a latent variable model by iterating the following two
steps:

e Expectation: Compute the expected values of the latent variables given the cur-
rent parameters and the observed variables.

e Maximization: Update the parameters using the maximum-likelihood estimate
given the observed variables and the expected values of the latent variables.

For IBM models 1 and 2, as well as the HMM model of Vogel et al. (1996), the expected
values of the latent variables (that is, the alignment variables a;) can be computed effi-
ciently and exactly. Model 1 additionally has the appealing property that its likelihood
function is convex (Brown et al. 1993), which means that the EM algorithm will always
find a global optimum, although this global optimum is usually not unique and a bad
initialization can result in finding a poor solution (Toutanova & Galley 2011).

The more elaborate IBM models 3, 4 and 5 do not have any known efficient method
of computing the expectations needed for EM; instead, approximate search algorithms
are used that require good initial parameter values in order to converge to a reasonable
solution. Typically, the IBM models are pipelined so that parameters learned by a
simpler model are used to initialize successively more complex models (Brown et al.
1993; Och & Ney 2003).

In the Bayesian versions of the IBM models (described further in Section 2.4), other
methods of inference must be used (Section 2.5). These are mainly variational Bayes
(Section 2.5.1) and Gibbs sampling (Section 2.5.3).

2.3.8. Symmetrization

The IBM alignment models and their relatives are asymmetric, and normally find very
different alignments depending on which direction they are run. For instance, the links
found in a German-English alignment would be expected to differ from the corresponding
English-German alignment of the same text. The errors made in the two different
directions are independent to some extent, so it is standard to perform a symmetrization
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procedure to combine the information contained in both directions. Formally, we can
describe this as a process of generating a set L of links (i, j), where (4,j) € L indicates
that word e; in the source language and word f; in the target language are linked.
The input to the symmetrization process are source-to-target alignment variables a;
(where f; is aligned to e,;) and the corresponding target-to-source variables b; (where
e; is linked to fp,). A number of possible solutions will be summarized below, offering
different tradeoffs between precision and recall.

2.3.8.1. Union

Include a link if it exists in at least one direction. This benefits recall, at the expense of
precision. Formally:
L={(,5) [ aj =iVbi=j}

2.3.8.2. Intersection

Include a link if it exists in both directions. This benefits precision, at the expense of
recall. Formally:
L={(,j) | aj =i Nbi =j}

2.3.8.3. Growing

One family of symmetrization methods starts from the intersection and gradually grows
the alignment into adjacent unaligned words (Och & Ney 2003, p. 33). Empirical evalua-
tions of different symmetrization methods have been performed by Ayan & Dorr (2006)
and, in more detail,by Wu & Wang (2007). Overall, these methods result in a lower
precision than the intersection and lower recall than the union, but typically a better
AER and F-score than either, indicating a better balance between recall and precision.
Algorithm 1 shows the grow-diag-final-and method, given that the NEIGHBORS func-
tion returns all eight coordinates surrounding (i, j)—that is, including the diagonals.
Several similar versions have been explored, including grow-final-and (which excludes
the diagonal neighbors) and grow-diag (which omits the invocations of FINAL-AND).

2.3.8.4. Soft symmetrization methods

The methods above all use discrete (or hard) alignments, assuming that we have fixed
values of a; and b;. In many cases, including the standard IBM models, we can obtain
marginal distributions for these variables: p(a; = ¢) and p(b; = j). Matusov et al.
(2004) and Liang et al. (2006) proposed different methods for exploiting these marginal
distributions to obtain improved symmetric word alignments. An important advantage
compared to using discrete alignments is that the tradeoff between precision and re-
call can be adjusted through some parameter, which could make probabilistic methods
more generally useful since different applications differ in preferring high precision or
high recall. In Section 3.2.3, I describe how soft alignments can be used with growing
symmetrization methods.
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Algorithm 1 The grow-diag-final-and symmetrization heuristic.

function GROW-DIAG-FINAL-AND (A1, As)
> Start with the intersection of Ay and As.
L+ Al N A2
> Then proceed to add links from the union, in different steps.
GROW(AI, AQ)
FINAL-AND(L, A1)
FINAL-AND(L, Asg)
return L
end function

> Add links to unaligned words neighboring current links.
function GROW(A1,A3)
while L changes between iterations do
> Consider all current alignments.
for all (i,j) € L do
> Check all neighboring points (i, j') that are also in the union.
for (¢, ') € NEIGHBORS(4, j) N (A1 U A2) do
> If either ey or f; is unaligned, add (¢, ') to L.
if (=3k.(¢,k) € L) v (—=3k.(k,j') € L) then
L« LU{(i,j)}
end if
end for
end for
end while
end function

> Expand L with previously unlinked words from A
function FINAL-AND(A)
for all (i,j) € A do
> If either e; or f; is unaligned, add (i, j) to L.
if (=3k.(i,k) € L) V (=3k.(k,j) € L) then
L« LU{(i,j)}
end if
end for
end function
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2.3.9. Discriminative word alignment models

Instead of applying the various heuristics discussed in the previous section, it is possible
to use manually created word alignments to train a discriminative model that predicts
alignment links based on e.g. asymmetric alignments from the IBM models, as well as
other information. It turns out that only a small amount of annotated data is sufficient
for attaining high accuracy in this way, and this has led to several studies on discrim-
inative word alignment (Taskar et al. 2005; Ayan & Dorr 2006; Fraser & Marcu 2006;
Moore et al. 2006; Liu et al. 2010).

Although in some situations it is reasonable to manually create the necessary word
alignments to train a discriminative model, for instance when creating a machine trans-
lation system between two languages where proficient human annotators are available,
this is clearly not a realistic requirement for, e.g., the New Testament corpus. For this
reason, and because generative alignment models are normally used as an essential sub-
component of discriminative models anyway, the topic of discriminative word alignment
models falls outside the scope of this thesis.

2.3.10. Morpheme alignment

For isolating languages, where there is a one-to-one correspondence between words and
morphemes, standard algorithms for word alignment also perform morpheme alignment.
However, few languages are perfectly isolating, and the more synthetic a language is the
further separated the two tasks become.

Figure 2.3 illustrates the difference between word and morpheme alignment, using
two languages with widely different levels of synthesis: English and West Greenlandic.
While both mappings are equivalent on a word level, Figure 2.3b is clearly the more
informative.

angajuqqaaminiissimavuq angajuqqaa-mi-niis-sima-vuq
he has been at his parents' place he has been at his parents' place
(a) Word alignment (b) Morpheme alignment

Figure 2.3.: English-West Greenlandic word vs. morpheme alignment. Example from
Fortescue (1984, p. 144).

Eyigoz et al. (2013) used the same HMM-based word order model as Vogel et al.
(1996), but used lexical translation probabilities at the morpheme level instead of (or,
although this decreases performance for most of their evaluation settings, in combina-
tion with) at the word level. In their evaluation on Turkish-English alignment, their
method produces better AER scores than IBM model 4 or Vogel et al.’s HMM model
run on unsegmented text. Unfortunately they only evaluate word alignment quality, not
morpheme alignment. This makes it difficult to compare their results to the most obvi-
ous baseline for morpheme alignment: treating morphemes as words and using standard
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word alignment algorithms.

The model of Eyigoz et al. (2013) assumed that both sides of the input bitext are
morpheme-segmented. They used a supervised tool for their experiments, but in princi-
ple unsupervised methods for morphology induction can be done. Unsupervised learning
of morphology is a field of active research, which is beyond the scope of this thesis. A
good and fairly recent review of the field was written by Hammarstrém & Borin (2011),
to which the interested reader is referred. In a sentence, the problem of unsupervised
morphology learning can be summarized as unsolved, but important subproblems can
be solved accurately enough to be of practical use.

Intuitively, it seems clear that parallel texts provide useful information for morpheme
segmentation, for instance, since a bound morpheme in one language can be a free mor-
pheme in another. There has been some work integrating morpheme alignment and
morpheme segmentation, but results are not overwhelmingly positive. Naradowsky &
Toutanova (2011), generalizing earlier work by Chung & Gildea (2009), found that their
model actually performed better with monolingual than bilingual morpheme segmenta-
tion, measured with segmentation F;.

Snyder & Barzilay (2008), on the other hand, find that jointly learning morpheme
segmentation for both languages in a bitext works better than monolingual segmentation
(also in terms of segmentation Fy), particularly for related languages. Snyder & Barzilay
(2008) used a corpus of short, filtered phrases (also used by Naradowsky & Toutanova
(2011) for most of their experiments), which makes it difficult to tell how generally
applicable their methods are in practice. Since they simultaneously sampled all possible
segmentations and alignments for each word, it is questionable whether this approach
scales to whole sentences.

2.3.11. Evaluation of bitext alignment

There are two general approaches to evaluating bitext alignments: intrinsic evaluation
methods that try to evaluate the quality of the word alignments as such, and extrinsic
evaluation methods that evaluate some other task (typically SMT) that uses the word
alignments as input. The main disadvantages of intrinsic evaluations are that we need
to define some measure of alignment quality, but these do not necessarily capture the
qualities we are interested in. Extrinsic evaluations, on the other hand, are by definition
task-specific and might be complex and time-consuming to set up. In the following, the
main focus will be on intrinsic evaluations.

Since the pioneering work of Och & Ney (2000, 2003) on the evaluation of bitext
alignment methods, most bitext evaluations have assumed a gold standard consisting of
two types of alignment links, sure links (S) and probable links (P), where S C P and
both are defined over pairs (i, j) indicating that word ¢ of the source language is aligned
to word j of the target language.

Given an alignment A to be evaluated, Mihalcea & Pedersen (2003) define precision
separately for sure and probable alignments:

|ANT|
|A]

pr(A,T) = (2.5)
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and similarly for the recall:
|[ANT|

T
where T is either P or S. Och & Ney (2003) and others have used precision (without

further qualification) to mean pp and recall to mean rg. AER attempts to combine
aspects of both, although it does not directly use either recall or precision in its definition:

rp(A,T) = (2.6)

|[PNA|+[SNA|

ABS(A,8.P) = =g

(2.7)
Finally, a weighted F-score has been advocated by some as an alternative to AER,
correlating better with the BLEU score (Papineni et al. 2002) in an SMT setup for some

values of a:
1
T a y l-a
23 s

F,(A, S, P) (2.8)

The precise value of « that best correlates with BLEU varies between different evalu-
ations, Fraser & Marcu (2007) found the range 0.2-0.4 for a number of language pairs
and settings; Holmqvist & Ahrenberg (2011) found 0.1-0.6 for different amounts of data
in a Swedish-English evaluation.

Note that in most cases, the F-score used weighs the P-precision and S-recall together,
although Mihalcea & Pedersen (2003) also defined the balanced (o = 0.5) F-scores
separately for both S and P links, whose formulas simplify to:

2
Fg = 2PSTS (2.9)
ps+71s
_ 2ppre. (2.10)
pp+rp

While the (weighted) F-score provides a balance between precision and recall, the AER
does not quite do this. It is even possible to construct an example where alignment A
has higher (i.e. better) precision and recall than alignment B, but also higher (i.e. worse)
AER:®

S| = 26 |P| = 64 |A] = 32 |B| = 62
ANS| =20 |[ANP|=32 |[BNS|=19 |[BNP|=60

which gives

A B
Precision 1.00 0.97
Recall 0.77  0.73
Fos 0.87 0.83
AER 0.103 0.102

3Thanks to Lars Ahrenberg for pointing this out.
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2.4. Bayesian learning

Finally, it is important to keep in mind that when evaluating against a gold stan-
dard alignment, the particular guidelines used for annotation (and of course the level of
adherence to these guidelines by annotators) makes a crucial difference. Holmqvist &
Ahrenberg (2011) compared a number of such guidelines. Since multiple annotators are
typically used, there is also a need to combine the links assigned by each. Here, Och &
Ney (2003) used the intersection of sure links and union of probable links from different
annotators to form the final sets of sure and probable links, respectively. Mihalcea &
Pedersen (2003) on the other hand used a final arbitration phase where a consensus
was reached, which led them to label all links as sure. Another method is to align the
smallest possible phrase pairs and generate sure links from linked single-word phrases
and probable alignments from all word pairs in linked multi-word phrases (Martin et al.
2003, 2005).

2.4. Bayesian learning

A thorough review of the vast amount of work done within Bayesian statistics is far
beyond the scope of the present work. Beyond basic statistics, which will not be covered
here, the background essential to understand the methods introduced includes Dirichlet
priors, non-parametric priors (particularly the Pitman-Yor Process), as well as MCMC
methods used to perform inference. A brief introduction to these topics will be given
next, with references to further literature for the interested reader.

2.4.1. Bayes' theorem

The starting point of Bayesian statistics is Bayes’ theorem:

_ p(dh)p(h)
plhld) = p(d) (2.11)
o< p(d|h)p(h)

The theorem states that given a prior probability p(h) of a hypothesis h, and a probability
p(d|h) of observing some data d given h, the posterior probability p(h|d) taking d into
account is proportional to the product p(d|h)p(h).

Running example In the following discussion, I will use IBM model 1 as a running
example. Initially, simplified subproblems will be considered, gradually building up to
the Bayesian version of model 1 (Mermer & Saraglar 2011; Mermer et al. 2013) and its
generalization (Gal & Blunsom 2013).

2.4.1.1. Bernoulli distributions

To illustrate Bayes’ theorem with a simple discrete distribution, consider the problem of
predicting what the probability is that an English sentence contains the word buy given
that its German translation contains the word kaufen ‘buy.’
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2. Background

In order to use Bayes’ theorem, the prior distribution p(h) and the likelihood function
p(d|h) need to be specified. For the present example, h denotes whether buy is present
in the English version of the sentence, and d whether kaufen is in the German. Since
there are only two outcomes (present or not present), these are modeled with Bernoulli
distributions, which contain a single parameter p, such that the probability of the first
outcome (present) is p, and that of the second outcome (not present) is 1 — p. The
parameters could be estimated from a corpus, and Table 2.1 gives the relevant statistics
from the New Testament. From this we can compute the Maximum Likelihood Estimates

kaufen —kaufen by

buy 8 5 13
—buy 2 7,942 | 7,944
) 10 7,947 | 7,957

Table 2.1.: Number of verses containing buy or kaufen in the English (King James) and
German (Luther) versions of the New Testament.

(MLESs) of the prior distribution

13
p(buy) = 7957
7944
- -7 1=
p(—buy) 05T p(buy)

and for the likelihood we have

8
p(kaufen|buy) = (E

p(=kaufen|buy) = % =1 — p(kaufen|buy)

2
p(kaufen|-buy) = 791l
7942
p(—kaufen|-buy) = 794 = 1 — p(kaufen|—-buy)

By using Bayes’ theorem, it is now possible to compute the posterior probability distribu-
tion of the English sentence containing buy given that the German translation contains
kaufen:
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2.4. Bayesian learning

p(buy|kaufen) o p(buy)p(kaufen|buy)

138
T 7957 13
8
~ 7957

p(—buy|kaufen) o p(—=buy)p(kaufen|-~buy)

7944 2
T 7957 7944
2
7957

which after normalization gives

p(buy|kaufen) = 0.8
p(—buy|kaufen) = 0.2

Since the probabilities used were estimated directly from the example in Table 2.1, we
can immediately see that this result makes sense, since 8 of the 10 verses containing
kaufen also contain buy.

2.4.1.2. Binomial and beta distributions

The probabilistic model of translating buy looks like this: every time an English sentence
with buy is translated into German, with probability p(kaufen|buy) add kaufen to the
translation, otherwise do not.

The value of p(kaufen|buy) is fixed, but unknown. Our only clue is that out of the 13
sentences with buy we have seen, 8 contain kaufen. In the previous example, we used
the following MLE for the data likelihood:

p(kaufen|buy) = —
p(—kaufen|buy) = —

Intuitively, it should be clear that the probability is unlikely to be ezactly 8/13. While
the data (8 kaufen) is most likely given a probability of 8/13, it is almost as likely even
if the probability is slightly lower or slightly higher.

We can use Bayes’ theorem to model this uncertainty. The hypothesis h in this case
is a value z € [0,1] representing the underlying probability p(kaufen|buy). The data
d contains the information that we have observed a = 8 cases of buy occurring with
kaufen, and b = 5 cases without kaufen.
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L L L L L
0 025 05 07 1 0 025 05 0.7
(a) Prior: Beta(1,1) (b) 8 of 13: Beta(9,6)

| | |
1 0 025 05 075 1
(c) 12 of 19: Beta(13,8)
Figure 2.4.: Prior and posterior distributions p(h|d) of the probability p(kaufen|buy),

given a uniform prior and the data that a translations of buy contain kaufen,
while b do not.

The data likelihood is described by a binomial distribution, with success probability
z, a successes (translations with kaufen) and b failures (translations without kaufen):

st = (“ 1)1 - ap

In order to not favor any particular hypothesis, we use a uniform prior such that
p(h) =1 for all z € [0, 1], otherwise zero.

By Bayes’ theorem, we have
p(h|d) oc p(h)p(d|h)
=1x <a+b)x“(l —a)°
a
o 21 — z)°

which is proportional to a Beta(a + 1,b + 1) distribution:

(1 —z)b

D) = Bl o+ 1)

B(m,y) is the beta function

B(x,y) = L (2)T(y)

F(;v+y)

and the gamma function F(T) is the generalized factorial function

o0
F(x) :/ t*leTtdt
0
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2.4. Bayesian learning

which as a special case has I'(n) = (n — 1)! when n € N.

The effect on the posterior of adding observations is shown in Figures 2.4b and 2.4c.
While some values of p(kaufen|buy) are highly unlikely (below about 0.2, or above about
0.9) the figure shows a rather large amount of uncertainty. Still, compared to the prior
(Figure 2.4a) considerable information has been gained by observing that 8 of the 13
sentences with buy so far have included kaufen.

Now, if we want to decrease the uncertainty further we can try to find more parallel
sentences with buy. Last time we started from a uniform prior, but this time we can do
much better by using the posterior distribution from the last step: Beta(9,6). Say that
we find a new sentences where buy is translated into kaufen, and b sentences where it is
not. Applying Bayes’ theorem using this prior, we obtain:

p(h|d) o< p(h)p(d|h)

Bl -2)® fa+Db\ ,
= B(0,6) ( a )x (a-ay
o 28(1 — 2)%2%(1 — z)°

_ x8+(l(1 _ x)5+b

(2.12)

which is a Beta(9 + a,6 + b) distribution. Say that we find six more sentences with
buy, and four of them turn out to contain kaufen. The new posterior then becomes a
Beta(13,8) distribution, shown in Figure 2.4c. This distribution is more concentrated
than the previous posterior (Figure 2.4b), reflecting the decreased uncertainty given the
new observations.

From Equation (2.12), it is easy to see that given a Beta(z,y) prior on the success
probability and an outcome with a successes and b failures from a binomial distribu-
tion, the posterior distribution of the success probability is distributed according to
Beta(z + a,y + b). This property makes the beta distribution a conjugate prior of the
binomial distribution, a very useful property as we can incrementally add new observa-
tions, and the resulting posterior is of the same family of distributions (in this case the
beta distribution) as the prior. Noting that the uniform prior we first used is equivalent
to a Beta(l,1) distribution, Figure 2.4 can be viewed as step-by-step updates of the
posterior (always a beta distribution) as more observations are made. Even if we do not
have any reason to favor any outcome over the other, the Beta(1, 1) (uniform) distribu-
tion is not the only reasonable option: in general, one can use a Beta(a, «) distribution
for any value o > 0. Figure 2.5 shows these distributions for values of a below, equal
to, and above 1.

As can be seen in Figure 2.5a, distributions with o < 1 assigns higher probability to
values near 0 or 1, and less to values around the middle. These distributions generate
sparse priors and serve to bias the posterior towards distributions where outcomes are
either very likely or very unlikely. It would have been reasonable to use a sparse prior
instead of a uniform prior in the example above. This would be one way of representing
our intuition that either kaufen (or any other given word) is the translation of buy, or
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| RN

L L L L L L L
025 05 07 1 0 025 05 07 1 0 025 05 075 1

ol

(a) Beta(0.5,0.5) (b) Beta(1,1) (c) Beta(2,2)
Figure 2.5.: Symmetric beta distributions of varying concentration.
| | | | | | | | | | | | |
0 025 05 075 1 0 025 05 075 1 0 025 05 075 1
(a) Prior: Beta(0.5,0.5) (b) Prior: Beta(1,1) (c) Prior: Beta(2,2)

Figure 2.6.: Posterior distributions p(h|d) of the probability p(kaufen|buy), given differ-
ent priors but the same data: a single occurrence of buy, which is translated
with kaufen.

it is not.* The case o = 1 is the familiar uniform distribution, and distributions with
« > 1 are biased against extreme points. A prior with a > 1 serves to smoothen the
posterior. As «increases, the posterior becomes more similar to the uniform distribution.
Figure 2.6 shows the effect of sparse, uniform and smooth priors when the data consists
of a single (positive) example. Since the amount of data is minimal, the prior has a
very large effect on the posterior distribution, pulling it towards or away from the MLE
(z=1).

2.4.2. The Dirichlet distribution

In the previous section, we considered a simplified translation model where buy may or
may not be translated into kaufen in a given sentence. As described in Section 2.3.3,

40f course, phenomena such as polysemy, synonymy and morphological variants ensure that this as-
sumption does not always hold in reality.
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2.4. Bayesian learning

the IBM models assume that the translation of a word e is chosen from a categorical
distribution p(fle).

Fortunately, the methods described in the previous section are straightforward to gen-
eralize. The beta distribution (over binomial distributions) is the two-dimensional special
case of the Dirichlet distribution, which is a distribution over multinomial distributions.

The parameters a of a d-dimensional Dirichlet distribution are real numbers «a; > 0,
and the probability density function is given by

d i—1
H'L lxa

pleja) = L

where B (a) is the multinomial beta function
(i .
B(a) _ Hi:ldr(a’)
r (Zi:l ai)

The Dirichlet distribution is a conjugate prior for the multinomial distribution. Given
a prior h ~ Dir(e) and a multinomial observation vector k, Bayes’ theorem gives

p(hlk, a) o p(h)p(d|h)
O e TSk ) 1T ok
- Bl(a) LT (R +1) H‘”

o Hx (2.13)

I(Xi*l‘*’ki

':m HE&

-
Il
=

UHrkz 1

Ea+k)

E_

that is, x|k, a ~ Dir(a + k).

Returning to our running example of IBM model 1, we are now ready to model the
translation probability distributions using Dirichlet priors. For each source word e,
there is a categorical distribution p(f|e) whose parameter is a vector @, where x; is the
probability of translating e to f;.

Observations are vectors k, where k; is the number of times the target word f; was
seen. For instance, buy might have been linked eight times with kaufen, four times with
kaufe and once with anschaffen. If the German vocabulary looks as follows:

f fa f3 fa fs

anrufen anschaffen kaufe kaufen lachen
then this observation would be represented as:

E=(0 1480 ..)
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Before being able to find the posterior distribution of @ using Equation (2.13), we also
need to decide on a prior. Typically, the priors used are symmetric (because we have
no reason to favor particular translations a priori) and sparse (because there is usually
only one or a few translations of a given word). A reasonable value for the symmetric
prior could be a = 0.001, or in other words:

x|a ~ Dir(0.001,0.001, 0.001, 0.001, 0.001, .. .)
Applying Equation (2.13), we obtain the following posterior distribution:
x|k, « ~ Dir(0.001,1.001, 4.001,8.001,0.001,...)

which means that @ is very unlikely to contain probabilities for anrufen or lachen that
are significantly above zero—just what our intuition tells us, given the assumptions that

1. buy is likely to be translated into only a few words
2. buy has never been observed with anrufen or lachen.

Note however that, unlike the MLE, this posterior distribution assigns non-zero (al-
though low) probabilities even to distributions that do assert buy is likely to be trans-
lated into e.g. anrufen. Thus if later evidence were to show many instances of buy being
linked to anrufen, the new posterior obtained after taking that information into account
would be adjusted to reflect this.

2.4.3. The predictive Dirichlet-categorical distribution

It is often useful to know the probability of one particular outcome k from a categori-
cal distribution, when the parameter vector x of the categorical distribution is itself a
random variable distributed according to a Dirichlet distribution Dir(e), and the only
known quantities are v and a sequence z1.,, of the m first outcomes.

In other words, we want to know the value of p(zm+1 = k|, Z1.m) given that & ~
Dir(a).

Returning to the example in the previous section, assume that we are interested in
modeling how the English buy is translated into German. zj.,,, represents the translations
we have seen so far (e.g. z1 = kaufen, zo = kaufe, z3 = kaufen). From this, and the
prior a, we would like to know the probability of each word being translated from buy
next time (that is, the value of zy4).

First, we need the probability of the sequence z1.,,, given a prior . Let n be a vector
such that n, is the number of times word a occurs in z1.m, i.e. Y, 0,,—¢. Next, we find
p(n|x) weighted by p(x|a), over all different categorical distributions  (where z; > 0
and Zf x; = 1, the d-dimensional probability simplex denoted A). This can be obtained
in the following way:
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1 d
— / Hxin1+ai—1 dx
B(a) Ai:l

B(n+ «
_lnta) -
B(a)
where B() is the multinomial beta function (see Section 2.4.2). The last step uses the
fact that the product Hle z;®itei—1 is simply an unnormalized Dirichlet distribution,
so we know that its integral over the probability simplex A is equal to the Dirichlet
normalization constant B(k: + a).
Now we can compute the predictive distribution, by using Equation (2.14) in the
second step and the fact that F(I + 1)/I‘(x) = z in the last step:
P(21:m, Zm1|er)
p(Z1mlor)
p(n + i)
p(n|a)
_ F(Zl(al + m)) ) H F(Oéi +n; + 5zk)
F(Zi(ai + ’m,) + 1) F(Oéi + nz)
g+ ng
== 2.15
5 (it ) (219)
where i, is the kth unit vector (representing a count of 1 for word k, since zy,+1 = k)
and d;; is the Kronecker delta function, defined as

. 0 wheni#j
Y711 wheni=j

p(zm+1 = k|a7zlzm) =

It is worth reflecting a moment on this simple expression that we had to walk through
integrals and long products of gamma functions to arrive at. Equation (2.15) is equivalent
to additive smoothing, a technique that has long been used to handle unseen events when
estimating categorical distributions from observed data.

At a glance, and without being aware of the above, additive smoothing might seem
like an ad-hoc method. The intuition behind it is that we can pretend that each k was
observed ny + aj times (for a smoothing constant ax) and computing the MLE given
these statistics.

On a practical level, the simple form of Equation (2.15) enables very efficient Gibbs
sampling in models based on categorical distributions with Dirichlet priors. This is
discussed further in Section 2.5.3.
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2.4.4. The Dirichlet Process

A Dirichlet distribution is defined over multinomial distributions with a fixed number of
d outcomes. In many cases, however, the number of outcomes is not given in advance.
This is when non-parametric models are useful, since they can model observations from
infinite-dimensional spaces using a finite set of parameters that grows with the number
of observations.

The Dirichlet Process, like the Dirichlet distribution, defines a distribution over multi-
nomial distributions. The multinomial distributions drawn from a Dirichlet Process can
have countably infinite support, in contrast to the finite-dimensional draws from a Dirich-
let distribution. In practice, these multinomial distributions are not sampled directly
but are marginalized out so that we can sample multinomial outcomes directly. This
requires only a finite number of parameters, which is not given in advance but grows
with the number of samples produced.

A Dirichlet Process DP(a, G) uses a concentration parameter « (analogous to the
parameter of a symmetric Dirichlet distribution) and a base distribution G with possibly
infinite support. Given previous samples z1.,, from a Dirichlet Process, the next value
can be sampled using the following distribution:

ng + aG(k)

2.1
m+ « (2.16)

P(Zmt1 = k|z1m, o, G) =
where ny, is the number of times the value k has been sampled so far, and Y, n; =
m. Equation (2.16), like the corresponding expression for the Dirichlet distribution
in Equation (2.15), is efficient to compute, and this makes the Dirichlet Process and
its generalization, the Pitman-Yor Process, popular choices as priors for categorical
distributions in Bayesian modeling.

A Dirichlet Process can equivalently be represented as consisting of two parts, a gen-
erator and an adaptor (Goldwater et al. 2006, 2011), providing a more intuitive way of
viewing the sampling process. The adaptor in the case of the Dirichlet Process is a
Chinese Restaurant Process (CRP), whose name stems from an analogy of a Chinese
restaurant with an infinite number of tables. Initially the restaurant has no customers,
and each new customer who enters the restaurant decides to sit at an empty table with
probability a/(m + «), where m is the number of previous customers, and otherwise
chooses another customer at random and sits down next to her. Nobody ever leaves the
restaurant. Formally, this amounts to sampling the table assignment 2,11 of customer
m + 1 according to the following distribution:

) a fk=|Z|+1
P(zm+1 = klzim,0) = —— -y, if 1 <k <|Z| (2.17)

m+ « .
0  otherwise

where | Z| is the number of occupied tables (or, equivalently, the number of unique values
in z), and ny is the number of customers seated at table k. The likelihood of a seating
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arrangement under a CRP is

N 12|
p(Zimla) = %(M*l I (e =1 (2.18)
k=1

An important property of the CRP is exchangeability between the customers, since
the ordering in z does not matter, only the counts nj of the number of customers at
each table. The analogy of the Chinese restaurant can be extended by imagining that
whenever a new table is opened, a dish is chosen for that table from a distribution G over
dishes. In the terminology of Goldwater et al. (2006), G is the adaptor, and they showed
that the distribution over the number of customers per dish is equivalent to a Dirichlet
Process with concentration parameter o and base distribution G. In NLP, the dishes
are typically made to represent word types, while customers represent word tokens.

2.4.5. The Pitman-Yor Process

The CRP can be generalized to the Pitman-Yor Chinese Restaurant Process (PYCRP)
by introducing a discount parameter d that is subtracted from each table count, which
changes the CRP sampling distribution (2.17) to the following:

d|Z|+a ifk=|Z|+1

P(zmt1 = klz1m, d, o) = mra d if1<k<|Z| (2.19)

0 otherwise

By replacing the CRP adaptor of the Dirichlet Process with the PYCRP, the Pitman-Yor
Process (Pitman & Yor 1997) is obtained. The sampling distribution of PYP(d, o, G) is

ng —d|Z| + (d]Z) + o) G (k)

2.2
m+ a ( 0)

p(zm+1 = ]C‘Zl;m, «, G) =

which as a special case (with d = 0) gives the corresponding Dirichlet Process sampling
distribution (2.16). The counts nj generated by the CRP and the PYCRP both follow
power-law distributions such that P(nj, = ) x 2~ 19 (Goldwater et al. 2011). Using
d =~ 0.8 results in a distribution close to the word frequency distribution in natural
languages, commonly known as Zipf’s Law. The likelihood of a seating arrangement
under a PYCRP is

1Z]-1 1Z]

F(nk — d)
g (kd + a) kl;[lir(l ) (2.21)

I‘(l + a)

p(zl:m‘dv 04) = F(m T CZ)

To obtain the likelihood of z under a PYP with base distribution G, Equation (2.21) is
simply multiplied by the probability G(Ix) of the dish I at each table k:

Cr(i+a) (A Zrm-d)\ (G
p(z1:m|d,a,G)—m kl;[l(kd+a) gm kl;[lc(zk) (2.22)
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2.4.6. Hierarchical priors

The Pitman-Yor Process and its special case the Dirichlet Process both use a base dis-
tribution G, and nothing prevents this base distribution from being another Pitman-Yor
Process. In fact, hierarchical Pitman-Yor priors and their special case, the hierarchical
Dirichlet Process (Teh et al. 2006), have been used in areas such as language modeling
(Teh 2006), where data is typically sparse but specific on one level (long contexts), and
rich but vague on another (short contexts).

A simple example can serve to illustrate this. Imagine that we want to model the
distribution of words occurring after the phrase “I saw,” denoted H(r g4, This is a
categorical distribution over an infinite number of possible strings, so we can use a
Pitman-Yor Process prior on it: PYP(d, «, G), for discount and concentration parameters
d and « (not further considered here), and some base distribution G. A very naive
language model could let G be uniform, but this would suffer from data sparsity since
there is no way of interpolating with information about shorter contexts.

We can however do much better by letting the base distribution be shared among
all the various distributions for strings that end in the same way as “I saw.” We call
this distribution Hr g, and its base distribution H\,,) is shared with all bigram
distributions ending with “saw.” Its base distribution Hy in turn is shared with all other
distributions representing one-word contexts. Finally, the base distribution of Hy could
be e.g. a uniform distribution (stating that all unknown words are equally likely) or some
distribution that assigns a probability based on how likely a given letter sequence is to
be an English word. The predictive model for the context “I saw” can then be expressed
in the following way:

w| “I saw” ~ Hr squ)
H(I saw) ™ PYP(dh aq, H(saw))
H(saw} ~ PYP(d27 a2, H(Z))
Hy ~ PYP(ds, a3,U)

Hierarchical Pitman-Yor Processes have also been applied to word alignment by Gal
& Blunsom (2013), who present versions of the IBM models (see Section 2.3.3) in which
the various categorical distributions are assumed to have hierarchical Pitman-Yor priors.
In the case of IBM model 1, they assume that each translation probability distribution
pi(+|e) has a separate Pitman-Yor Process prior, and that these priors share a common
base distribution. The common base distribution thus models the unconditional fre-

quency of each word in the target language, which is interpolated with the per-word
translation distributions. Formally:

fle ~ G
Ge ~ PYP(dy, a1,Gp)
Gm ~ PYP(dQ7 Qag, U)

In effect, this provides a bias towards linking to common target words. Whether the use
of hierarchical priors actually leads to any improvement in word alignment quality is left
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unanswered by Gal & Blunsom (2013), but I explore this question further in Section 3.5.
Sampling from a hierarchical Pitman-Yor Process is somewhat more complicated than
sampling from a non-hierarchical distribution, but efficient algorithms exist (Blunsom
et al. 2009).

2.5. Inference in Bayesian models

As was briefly outlined in Section 2.3.7, the IBM alignment models are generally trained
using the EM algorithm. Particularly for the simpler models, this can be done exactly
and efficiently, but only when simple categorical distributions are used. In the extended
Bayesian versions of the IBM models, outlined in Section 2.4.2 and Section 2.4.5, we
are forced to look for alternatives to the EM algorithm. A few such methods will be
discussed below, with the main focus put on Gibbs sampling, since that is the method
I use for the models developed later in this work.

2.5.1. Variational Bayesian inference

Variational Bayesian methods can be used to find approximate solutions in Bayesian
models with latent variables (Beal 2003). Riley & Gildea (2012) use this approach to
train IBM models 1 and 2 extended with Dirichlet priors on the translation and distortion
distributions (see Section 2.4.2), which turns out to require only a minor modification
of the standard EM algorithm that does not add to the computational complexity. As
expected, they find that using sparse Dirichlet priors improves the accuracy of both
word alignment and downstream SMT. Eyigoz et al. (2013) later extend this method for
morpheme alignment, but find that results are sometimes worse than the corresponding
EM-based algorithm. Unfortunately, for more complex models (such as the ones explored
in my own work), deriving the variational Bayes equations can be quite difficult.

2.5.2. Markov Chain Monte Carlo

MCMC methods can be used to obtain unbiased samples from the posterior distribution
of a Bayesian model. In general, this is achieved by starting with some assignment of
the latent variables, then in each iteration sampling a new assignment from a distribu-
tion conditional on the previous assignment. Given that this sampling satisfies certain
conditions, the variable assignments sampled during all iterations will approach the true
distribution according to the model.

One very important consequence of the dependence on the previous variable assign-
ment is that adjacent samples are correlated. This means that certain parts of the
solution space, though probable, may not be visited for a very long time if they are too
distant from the starting assignment. In practice, computational resources may only be
enough to produce a small number of samples, and if the correlation between adjacent
samples is too strong (the mizing is slow) this causes a heavy bias towards the starting
point. On the other hand, even if the samples represent only a small region of the likely
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solution space, this could still be acceptable, just as local maxima are often accepted in
deterministic algorithms such as EM.

MCMC methods in general constitute a large research area, and most of it is beyond
the scope of this work. Interested readers are instead encouraged to consult the vast
literature available. To start with, the novice might benefit from watching the excellent
talks of Tain Murray® on MCMC methods to get a good overview of the area. More
thorough introductions (in writing) exist by e.g. Andrieu et al. (2003), Besag (2004) and
MacKay (2003, ch. 29).

The tutorial by Resnik & Hardisty (2010) provides a good introduction from an NLP
perspective, with a thorough derivation of a Gibbs sampler for a document topic model.
Knight (2009) has written a more informal introduction to Gibbs sampling in NLP.

2.5.3. Gibbs sampling

MCMC methods differ in how the next latent variable assignment is sampled. In Gibbs
sampling, this is done by sampling each variable separately (in a deterministic order)
conditional on the current value of all other variables. This simple method turns out to
be sufficient to guarantee unbiased samples from the model.

Given a suitable choice of distributions, the Gibbs sampling distribution is often easy
to derive. For categorical distributions with Dirichlet priors, Equation (2.15) is used,
and for Pitman-Yor Process priors Equation (2.20).

We are now able to account for the Gibbs sampling algorithm for a Bayesian IBM
model 1 with symmetric Dirichlet priors on the word translation distributions (Mermer
& Saraglar 2011; Mermer et al. 2013). A detailed description is found in Algorithm 2,
but for clarity, a high-level summary follows:

1. Randomly initialize all alignment variables.

2. Repeat the following sampling procedure, which at each time ¢ generates a new
sample of the alignment variable vector a(®).

a) Sample each value a; in turn from p(ila_j;, e, f).

b) Let a® be equal to the current value of a.

Note that Algorithm 2 describes a collapsed Gibbs sampler, where the categorical word
translation distributions are never explicitly sampled, but marginalized out as shown in
Equation (2.15). It is possible to explicitly represent the conditional distributions as an
additional set of variables @, where 6y is used for pe(fle). In each sampling iteration,
we would then sample both the categorical distributions 6 and the alignment variables
a. I follow previous work in using collapsed Gibbs sampling, since € contains a very
large number of variables and would slow down the sampling considerably, and nobody
has demonstrated any benefit in terms of accuracy from using an explicit sampler for
this model. Empirical support for this decision is presented in Section 3.3.

5http ://videolectures.net/mlssO9uk_murray_mcmc/
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2.5. Inference in Bayesian models

Algorithm 2 Collapsed Gibbs sampling for IBM model 1 with Dirichlet priors.

> Set alignment counts to zero, they will be initialized below.
n.. <0
> Initialize by aligning all target words to a random source word.
for all a,e, f € S do
forall j«1...Jdo
> Link to one of the I source words (sampled uniformly).
a; ~ Uniform(1...I)
> Update the counts to reflect this choice.
Neq  f; < Neq. f; T 1
end fojrfj b
end for
> Main part of the algorithm: produce a series of T' samples.
fort=1...7 do
for all a,e, f € S do
forall j«1...J do
> Remove counts that depend on a;.
Mo, f; = Mea; f; — 1

> Sample one variable (a;) conditioned on all others (a_;).
. Neg, f +a
aj ~plila_j, e, f) < W

> Update the counts with the new value of a;.
Neg. f; & Neg. f; T 1
end f(irf] ok
end for
> All variables of a have now been sampled.
a) —a
end for




2. Background

Gao & Johnson (2008) empirically evaluated different methods of estimation for un-
supervised HMM learning. Their conclusion was that results depend heavily on the
details of the task. More specifically, they found plain EM to be consistently worse
than Bayesian methods, and Gibbs sampling generally to provide better results than
variational Bayes, although the latter models tend to converge more quickly. Mermer
et al. (2013) confirmed that the same relative performance of EM, variational Bayes and
Gibbs sampling is valid for the word alignment task. As for collapsed vs. explicit Gibbs
samplers, their results varied depending on the size of the data, the number of hidden
states, and the evaluation metric used. Although Gao & Johnson (2008) showed that few
general conclusions could be drawn without a problem-specific evaluation, their results
at least hinted that collapsed Gibbs sampling is a reasonable method compared to the
obvious alternatives.

2.5.4. Simulated annealing

Simulated annealing is a stochastic optimization method closely related to MCMC (Kirk-
patrick et al. 1983; Richey 2010). The central idea is to use a temperature parameter to
control the amount of stochastic noise, which is gradually lowered during optimization.
This allows for a wide range of solutions to be explored in the beginning, a range that
is slowly decreased so that progressively smaller ranges are considered.

It is straightforward to incorporate this idea into a Gibbs sampler. Rather than
sampling directly from p(z;|x_;), we sample from

Plaile—;) o plai|z_i)/T

where 7 is the temperature parameter. Some special cases include 7 = 1, which is plain
Gibbs sampling, 7 — 0, which corresponds to greedy hill-climbing, and 7 — oo, which
samples z; from a uniform distribution (ignoring x_;).

Simulated annealing is particularly useful for problems where the model structure
changes in ways that makes it difficult to use the methods described in Section 2.5.5 to
estimate marginals from multiple samples.

2.5.5. Estimation of marginals

MCMC algorithms output a series of samples of the latent variables in a model, where
each sample is chosen according to the probability assigned to this variable assignment
by the model. What exactly should we do with these samples?

For the sake of concreteness, assume that the model is IBM model 1 with Dirichlet
priors (see Section 2.4.2). In this case, the samples are vectors a(®) (for each sample
t =1...T) containing alignment variables a;. Using these samples, there are mainly two
things we are interested in approximating: the most probable alignment arg max, pys(a)
and the marginal distributions pq;, (i) for each alignment variable a;. We will now go
through a few possible ways to use the samples a'®) to approximate these quantities.
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2.5. Inference in Bayesian models

2.5.5.1. Using the last sample

The simplest choice is to use the last sample, a(™), to approximate arg max, par(a).
Assuming T is high enough, ™ is an unbiased sample from py(a). The probability
under the model pM(a<T)) is therefore likely to be high, since low-probability alignments
are less likely to be chosen. So if the model is good, then a( should at least be a
reasonable alignment. While using a) might sometimes be the best course of action,
for many models it is better to instead approximate the marginal values of the variables
of interest.

2.5.5.2. Maximum marginal decoding

We can approximate the marginal distributions for each variable using these samples:

Pa; (1) = E [00,=i]

pPMm

= pu(a)da;—i (2.23)

1 I
~— é ) 2.24
T tz:; a§t):l ( )

The approximation of each distribution p,; is useful for a number of purposes beyond
estimating arg max, pas(a). For instance, a high variance of a; indicates that the model
is unsure about that particular alignment link, and some applications might want to
discard it.

If a single alignment is desired, we choose each a; to be the mode in our approximation

of pg;. In practice, this can be done by choosing the most common value of ay) among

the samples a(® (t = 1...T). Johnson & Goldwater (2009) showed that this improves
performance in their word segmentation task, and my own experiments confirm this for
various word alignment models.

MCMC samples are correlated, which means that for low ¢ the value of a(® is biased
towards the initial state a(9). Since the initial state typically has a rather low probability,
early samples will be biased towards a poor solution, and we might want to discard them
50 as to not ruin the estimates of p,;. This is referred to as burn-in and leads to improved
solutions under some circumstances.

2.5.5.3. Rao-Blackwellization

Although Equation (2.24) approaches the true marginal distribution Equation (2.23) as
the number of samples grows, it is possible to obtain faster-converging estimates of the
marginal distributions through applying the Rao-Blackwell theorem (Blackwell 1947).
This process of Rao-Blackwellization gives the following expression (Gelfand & Smith
1991):

T

1 ) _ 5,01
E [0q.—i] ~ Y =dla. 2.2
E [00;=i] ;:1 pla; ila”; ™) (2.25)
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Note that p(ag-t) = i\a(fj_l)) is just the Gibbs sampling distribution for a;, so these values
are computed for each 7 in any case.

2.5.6. Hyperparameter sampling

So far, we have ignored the values of the parameters to the Dirichlet distributions and
Dirichlet and Pitman-Yor Processes used. There are three fundamental ways of dealing
with this issue:

1. Take a value from someone else’s paper and use that.
2. Investigate a few values on your own problem, then choose the best.
3. Sample the parameters like all the other latent variables.

Johnson & Goldwater (2009) conducted an empirical evaluation of these methods (or
at least items 2 and 3) in a word segmentation model and find a considerable gain in
accuracy when hyperparameters were sampled. To sample the hyperparameters we need
two things: a prior p(a) on a given parameter value «, and a data likelihood function
p(x|a). Then, by Bayes’ theorem, the posterior from which we sample « is

p(alz) oc p(a)p(z|a)

The likelihood p(x|a) is given by the model, but we are faced with choosing a prior. This
made Knight (2009, ch. 27) remark: “Yes, it’s turtles all the way down!” Fortunately,
the next turtle (the parameters for the hyperparameter prior: hyperhyperparameters)
has a smaller effect on model performance, so we can get away with choosing a prior
with a high level of uncertainty. Johnson & Goldwater (2009) used uniform priors for
the discount parameters of Pitman-Yor Processes, and Gamma(10,0.1) priors for the
concentration parameters. They found no significant differences in accuracy with other
values of the gamma distribution parameters. Gal & Blunsom (2013) then repeated that
choice of priors for their word alignment models.

In practice, slice sampling (Neal 2003) has proven to be useful for the task of hyperpa-
rameter sampling. Slice sampling only requires that we can evaluate a function p(z) pro-
portional to the actual probability density function p(x). For instance, if the parameter d
of a PYCRP is to be sampled, Equation (2.22) can be used for p(d) = p(d)p(z1.ml|d, @),
where p(d) is some prior and z and « are fixed while sampling d. An accessible in-
troduction to slice sampling can be found in MacKay (2003, pp 374-378), from which
Algorithm 3 is adapted. At a higher level, one iteration of the slice sampling algorithm
works as follows, starting from point x:

1. Sample «’ uniformly between 0 and p(z).
2. Find an interval z; < x < xp, such that p(x;) < v’ and p(z,) < u'.

3. Sample 2’ uniformly from the interval, unless p(z’) > v’ the interval is shrunk and
2’ is resampled from this smaller interval.
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2.5. Inference in Bayesian models

Algorithm 3 Slice sampling of a distribution p(z) o p(z).

function NEXTSAMPLE(z,w,p)
> Uniformly sample a point «’ below p(z)
u’ ~ Uniform(0, p(x))
> Find an interval [z, z,] around x such that p(z;) <« and p(x,) < o/
r ~ Uniform(0, 1)
Ty T —Trw
T —z+(1—r)w
while p(x;) > v’ do
T < T —w
end while
while p(z,) > v’ do
Ty — Ty +W
end while
while not returned do
> Draw a candidate sample z’ uniformly from [z, z,]
2’ ~ Uniform(z;, x,)
if p(z') > v’ then
> Accept the sample if p(z’) > v’
return 2’
else
> Otherwise, make the interval tighter and try again
if 2/ > 2 then
T, — 2’
else
T o
end if
end if
end while
end function
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2.6. Annotation projection

Given a parallel text, a subset of whose translations are annotated with some linguistic
information (e.g. PoS tags), we can use a word alignment to transfer these annotations
to other translations in the parallel text.

2.6.1. Direct projection

Given a word alignment where target language tokens f; are aligned to source language
tokens e,; and some labeling L. of the source language tokens, we can define a label-
ing Ly of the target language such that Ly(fj) = Le(eq;). Figure 2.7 illustrates the
process of direct projection. For instance, in this case Feuer ‘fire’ (f4) is aligned to
fire (eq,). Given that L.(eq,) = NOUN, and using direct projection, we then also as-
sume Ly (fs) = Le(€q,) = NOUN. In this well-chosen example from two closely related
languages, both the projected PoS and dependency annotations happen to be correct
(except the unaligned da ‘then’).

/f ;*\x\f\\\\\\\ "

? VERB PRON NOUN CONJ NOUN ADP NOUN
fi 6 f; £ fs f f; f
... da regnete es Feuer und Schwefel vom Himmel ...

AT 1

NULL ...it rained fire and brimstone from heaven ...
€ €2 e; e, es €6 e
PRON VERB NOUN CONJ NOUN  ADP NOUN

e

Figure 2.7.: Direct transfer of PoS and dependency annotations from English (below,
filled) to German (above, shaded).

Of course, things are not quite that simple in general. We will now go through some
of the problems, along with possible remedies. Tackstrom (2013, section 7.2.1) discusses
the problem with direct projection in general, and for more detailed discussions focusing
on dependency projections, see Hwa et al. (2002) and Spreyer (2011).

2.6.1.1. Structural differences between languages

There is considerable variation across languages in how words are formed, categorized
and combined. Given this variation and the fact that some even argue against the
existence of cross-linguistically valid categories (Croft 2001; Haspelmath 2007), it might
seem foolish to attempt to transfer, for instance, PoS annotations from one language to
another. This is a valid objection in the sense that one should be very careful to draw
theoretical conclusions based on automatically projected annotations (and if one is not
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2.6. Annotation projection

convinced by the theoretical arguments, the word alignment error rates are high enough
to warrant caution). However, as Figure 2.7 demonstrates, there are clearly cases in
which the results of annotation projection are reasonable and useful.

Pragmatically oriented NLP researchers have developed coarse-grained annotation sys-
tems for PoS tags (Petrov et al. 2012) and dependency grammar structures (McDonald
et al. 2013), designed to be as consistent across languages as possible. While these
attempts do not address the underlying theoretical issue of comparability between the
structures of different languages, they make great progress towards overcoming a large
practical problem, namely that morphosyntactic annotation standards for different lan-
guages tend to operate on very different principles, thereby making them more or less
incompatible.

2.6.1.2. Errors in word alignments

Automatic word alignment algorithms make errors for a variety of reasons, which were
discussed in Section 2.3. Clearly, misaligned words (or unalignable words) can cause
additional errors in a direct projection of annotations. Some authors attempt to solve
this by filtering out sentences with unreliable alignments, so that the remaining and
more accurate parts can be used to estimate parameters for robust target-side models
of e.g. PoS tagging (Yarowsky & Ngai 2001; Yarowsky et al. 2001; Hwa et al. 2005; Das
& Petrov 2011; Spreyer 2011).
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3. Alignment through Gibbs sampling

Although a few works have been published on word alignment through Gibbs sampling,
they leave many questions unanswered. The purpose of this chapter is to supplement
previous evaluations and to further contribute to the theoretical and practical under-
standing of Bayesian word alignment models. The bulk of my own innovations will be
saved for later chapters, and the present one is restricted to establishing a solid founda-
tion for those methods by filling in some important gaps in previous research.

3.1. Questions

DeNero et al. (2008) presented a non-parametric Bayesian model for phrase alignment
intended for phrase-based SMT systems but did not evaluate word-level alignment accu-
racy. Mermer & Saraglar (2011) only performed an SMT evaluation with Moses (Koehn
et al. 2007), using English-Turkish, English-Czech and English-Arabic corpora. There
was no evaluation on manually annotated bitexts, so alignment performance figures are
not available. A further limitation of their work is that they only explored IBM Model
1, with Dirichlet priors and fixed hyperparameters. Gal & Blunsom (2013) carried out
more extensive experiments on the Chinese-English FBIS corpus! evaluating both with
an SMT system (also Moses) and directly using AER. As a baseline, they used the
GIZA++ implementation (Och & Ney 2003) of the IBM models.
While valuable, these works leave a number of important questions unanswered:

e How do the Bayesian models perform on commonly used word alignment evaluation
data sets?

e Is collapsed Gibbs sampling superior to explicit sampling for the word alignment
task?

e Do non-parametric hierarchical priors (such as the Pitman-Yor process used by
Gal & Blunsom) improve accuracy compared to simple Dirichlet priors (used by
Mermer & Saraglar)?

In this chapter, I attempt to answer these questions in turn.

3.2. Basic evaluations

Since previous studies of word alignment algorithms using Gibbs sampling either have
not evaluated alignment performance at all (Mermer & Saraglar 2011), or have done so

'LDC catalog number LDC2003E14, not available for general licensing.
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on corpora that are not freely downloadable (Gal & Blunsom 2013), there is a need for
evaluations to serve as baselines for future work. In this section, I describe the basic
algorithms used and present empirical results for various data sets.

3.2.1. Algorithms

The fundamental building block of this thesis is the collapsed Gibbs sampling algorithm
described in Section 2.5.3, where each alignment variable is sampled in turn, conditioned
on the current state of all the other alignment variables. There are however many possible
variations of and additions to this building block, and I will now go through those that
are relevant to the experiments in this chapter.

3.2.1.1. Modeled variables

The technique pioneered by Brown et al. (1993), where simple alignment models are used
in a “pipeline” to initialize increasingly complex models, has proved essential in avoiding
bad local maxima in complex, non-convex models. While a particular pipeline has been
established as standard for the IBM models (models 1 through 5, with model 2 replaced
by the HMM model), the variables below could be added in an almost arbitrary order,
and multiple variables could be added in a single step. In Section 3.4, I will empirically
investigate some of these combinations.

e Lexical (1): In all models, target words f depend on source words e according
to the distribution p:(f|e). Using only this dependency results in IBM model 1
(Section 2.3.3.2).

e Word order (H): The HMM alignment model of Vogel et al. (1996), described
further in Section 2.3.3.4, adds a distribution p;(a; —aj—1|I) describing the length
of the “jump” in the source language when moving from token j — 1 to token j in
the target sentence.

e Fertility (F): Next, the number of word aligned to a certain word (its fertility,
see Section 2.3.4) is modeled using a distribution ps(¢le).

e Tags (P): When PoS tags are available, these can be modeled in a way analogous
to lexical items above, through a distribution p,(ts|te) representing the dependence
of target tags ty on source tags t. (Section 2.3.5.1). These tags can be given or
transferred between the languages in a bitext, as described in Chapter 4.

I will use the letters in brackets to succinctly describe different alignment models, so
that e.g. 1+H+F represents a model with lexical, word order and fertility parameters.
In Section 4.1, the letter T will also be used to indicate the PoS transfer algorithm
described there.

By assuming conditional independence between these distributions, each distribution
simply becomes another factor in the Gibbs sampling distribution for alignment variable
aj.
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To make things more concrete, recall that Algorithm 2 shows the sampling process for
step 1 above, with only lexical dependencies. When moving to the HMM-based word
order model, the only change needed is to the sampling iteration, which for symmetric
Dirichlet priors yields:2

e f; + Mimaj + 0 Naja—i + 0y
) Mg+ [ Floae 2 ome+ Njoy 3o + Njoy

plila_j, e, f) x 5 (3.1)
where a; and «; are the Dirichlet parameters for the lexical and word order distributions,
respectively, and N; is the number of different jump lengths allowed.

Fertility and tag translation distributions can be added analogously. Note that the
computational complexity of a sampling iteration remains quadratic in the length of the
sentence, in stark contrast to the EM algorithm, which has cubic complexity for the
HMM model and is intractable for the fertility model, forcing implementations to use
approximations. This allows the use of longer alignment units than individual sentences,
such as Bible verses, or in non-literal translations where it can be difficult to find a good
one-to-one sentence alignment.

While Gibbs sampling typically requires a greater number of iterations for acceptable
results than EM, the relatively low amount of computation per iteration means that
speed is comparable between the approaches.

3.2.1.2. Sampling

FEach experiment consists of eight independently initialized models, each producing a
long enough series of samples to ensure a very slow change of alignment accuracy. From
this, the alignment marginal probabilities are computed in one of two ways:

1. using Rao-Blackwellization (Section 2.5.5.3) from the samples from one of the eight
independent models

2. as above, but averaging over all of the independent models.

The purpose of the second method is to cancel out the bias from the random initial-
ization. To illustrate the kind of obstacles a single sampler might face, consider the
following example: In the New Testament the words camel and needle occur mostly
together, in the same verses. If one particular random initialization leads to camel being
aligned multiple times to a word corresponding to needle in another language, and vice
versa, sampling the opposite (correct) alignment links in a particular sentence will be
very unlikely. An even more extreme version of this problem can be found in the explicit
sampler explored in Section 3.3. With multiple independent samplers, some are likely
to sample mostly in the neighborhood of the correct solution, while others keep near the

2Technically, this is incorrect because it assumes the two concurrent draws from the jump length
distribution p; are drawn independently from the same distribution. In practice, the error does not
seem large enough to affect the accuracy of the algorithms negatively. For Dirichlet priors an exact
solution could be obtained, but to my knowledge this is not possible for a hierarchical PYP prior.
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incorrect one. When averaged, the result better reflects the fact that the model assigns
relatively high probability to both solutions.

Instead of using multiple samplers to circumvent the problems with slow mixing in
some regions of the parameter space, one could also try to design a sampler with better
mixing properties. In other applications, this has been approached by e.g. type-level
sampling (Liang et al. 2010), and it is possible that similar methods could be used to
improve Gibbs samplers for word alignment as well. For the HMM model it would also
be possible to use sentence-wise blocked sampling, which has turned out to be superior
in other HMM-based models (Gao & Johnson 2008).

3.2.2. Measures

Given the problems with existing measures of word alignment quality discussed in Sec-
tion 2.3.11, as well as the large number of different such measures, I have decided to
include the following raw data:

|S| number of sure alignments in the gold standard
| P| number of probable alignments in the gold standard
|A| number of alignments returned by algorithm

|[ANS| number of algorithm’s alignments in the sure set
|AN P| number of algorithm’s alignments in the probable set

From these figures all of the standard evaluation measures can be derived, including pre-
cision, recall, balanced F-scores (combined and for each alignment type) and AER. I will
also give some of the standard measures for convenience, despite their being technically
redundant,.

3.2.3. Symmetrization

The experiments in this section all use the following symmetrization method:

A ={(1,J) [ plai = j)p(bj = 1) = r1} (3.2)

where ry is a threshold value, which in this section is fixed at 0.25. This corresponds
to a “soft” version of the intersection heuristic described in Section 2.3.8, similar to
what was used by Liang et al. (2006). Equivalently, we could express this condition
to say that a link (4,7) is added if the geometric mean of p(a; = j) and p(b; = 7) is
above one half. It is of course possible to use other thresholds for different tradeoffs
between precision and recall, but the value 0.25 is both theoretically plausible (given
the geometric mean interpretation) and empirically strong in my own experience, as
well as in the evaluation of Liang et al. (2006, Figure 2). The reason for choosing the
soft intersection method is that the algorithms produce rather few NULL alignments and
relies on the symmetrization step to exclude alignments that are inconsistent between
the two alignment directions.

The growing heuristics described in Section 2.3.8, which start from the intersection
and selectively add links from either of the two asymmetric alignments, can be extended
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Table 3.1.: Total corpus sizes (in sentences) and number of (S)ure and (P)robable align-
ment links in their respective evaluation sets.

Corpus Sentences  |S| |P|

WPT-03 English-French 1,130,588 4,038 17,438
WPT-05 Romanian-English 48,641 5,034 5,034
WPT-05 English-Inuktitut 333,185 293 1,972
WPT-05 English-Hindi 3,656 1,409 1,409
Europarl English-Swedish 692,662 3,340 4,577

to the soft case in different ways. The easiest is to first discretize the alignments and
then use the standard algorithms. A more flexible method, however, is to compute
the intersection using Equation (3.2) and discretize the asymmetric alignments in the
following way:

Av={(,7) | plai = j)p(bj = i) > rs Ap(a;) > 74}

Ay = {(0.7) | plas = )p(b; = i) > rs A p(by) > ra) (3:3)

This method has three parameters: the thresholds 77, s and r4. In general, r; should
be fairly high to ensure a high-precision alignment to start with, rg should be less than
rr so that links do not have to be probable in both directions to be included, and r4
should be high so that links must be probable in at least one direction.

This symmetrization method is used in Section 3.5, where the parameters are op-
timized on annotated development data. Typical values from these experiments are
rr ~ 0.25, rg < 0.1 and r4 = 0.75, but this can vary considerably depending on which
languages are aligned, and which balance between precision and recall is desired.

3.2.4. Data

T use two different types of corpora in my evaluations: bitext corpora (summarized in
Table 3.1) and the New Testament corpus. This section provides brief summaries of
the various corpora and references that the interested reader is encouraged to consult.
When possible, public data sets that are available free of charge have been chosen.?
The shared task of the Workshop on Building and Using Parallel Texts (WPT) (Mi-
halcea & Pedersen 2003) and its successor in 2005 (Martin et al. 2005) provided several

3 Rada Mihalcea provides copies of the WPT corpora on her website: http://web.eecs.umich.
edu/~mihalcea/downloads.html and the Europarl corpus can be found at http://www.statmt.
org/europarl/. The subset used in my experiments consists of the first 700,000 lines of the
sentence-aligned Swedish-English corpus from version 7 of the corpus. Since a few sentences are
unaligned, the actual number of parallel sentences used for English-Swedish experiments is slightly
lower (see Table 3.1). Finally, the English-Swedish gold standard annotations can be found at
http://www.ida.liu.se/labs/nlplab/ges/.
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hand-aligned data sets for word alignment evaluation, plus unannotated training data.
In my evaluations, I used the Romanian-English,* English-Inuktitut, English-Hindi and
English-French data. Holmqvist & Ahrenberg (2011) created a hand-aligned English-
Swedish evaluation set from the Europarl corpus (Koehn 2005). I used this with the
first 700,000 sentences of the English-Swedish bitext from Europarl version 7 as training
data, to be comparable to the “large” training set of Holmqvist & Ahrenberg.

For some experiments, I also use a corpus of 1,142 New Testament translations into
1,001 languages, as compiled from various Internet sources. A complete list of the
languages included can be found in appendix A. Although many of the texts are not
covered by copyright, the copyright status of other texts is unclear, so I am unable to
make the corpus available through a public website. Since the New Testament corpus
contains no explicit alignment links, the method described in Section 5.1.1.4 was used
to create gold standard links of the same format as the corpora above.

All of the corpora that were used are sentence-aligned, except for the New Testament
corpus, which is aligned at the verse level. Verse alignment is in fact an advantage
in a multilingual setting, since it minimizes the impact of translation-specific sentence
boundaries.

3.2.5. Baselines

The Bayesian alignment models under consideration require no data except a sentence-
aligned bitext, and so comparison should be focused on alignment models operating
under similar constraints. However, with further resources it is in some cases possible
to improve the accuracy of word alignment algorithms.

3.2.5.1. Manually created word alignments

Although fully supervised word alignment is rare due to the high cost of human anno-
tation of large amounts of data, one line of research uses discriminative models to learn
from a small set of manual word alignments plus a larger amount of unaligned bitext
(see Section 2.3.9). The obvious disadvantage of models using any kind of supervision
is the need for annotated data, which is available for only a handful of language pairs—
an exceedingly small fraction of the millions of possible language pairs in the world.
This unfortunately prevents their application to e.g. the typological investigations in
Section 4.5 and Section 5.3.

3.2.5.2. Other resources

There is a variety of other resources that have been used for word alignment: dictionaries
(Och & Ney 2003, p. 32), PoS tags (see Section 2.3.5.1, further explored in Chapter 4),
syntactic parses (see Section 2.3.5.2), etc. As was the case with manually created word

“Note that both the WPT-03 and WPT-05 shared tasks included Romanian-English, using the same
training data but different test sets. The WPT-05 test set appears to be somewhat more difficult,
both in my own experiments and in those by Liu et al. (2010, p. 329).
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alignments, these resources are only easily available for a small subset of the world’s
languages.

The WPT shared tasks contained two separate tracks: one for limited resources (unan-
notated sentence-aligned bitexts, along with small trial sets of manually word-aligned
sentence pairs), and one for unlimited external resources (Mihalcea & Pedersen 2003;
Martin et al. 2005). Although the trial data sets are small, some researchers have used
them for semi-supervised discriminative training and have obtained good results in doing
so (Liu et al. 2010, p. 329).

3.2.5.3. Baseline systems

Table 3.2 summarizes the systems used or referred to in this thesis, including my own.
The resources required by each system are identified by two independent features.

e Supervision: yes (requires manually created word alignments) or no.

e Resources: both (requires other resources that are either bilingual or that they
must be present for both languages), one (requires other resources that must only
be present for one language), or no.°

All of the baseline experiments, except those using GIZA++, have been performed
by other authors. While this means that there is considerable diversity in the methods
used, the most important point is to find strong baselines to compare against.

Note that several authors have published results using discriminative alignment al-
gorithms on the same datasets I use, but they have generally used part of the test set
for discriminative training, which means that the reported figures use different test sets
than the original task. Therefore, and because my focus is on unsupervised algorithms,
I excluded these from the comparison. One exception is the Vigne system, where an
evaluation on the standard test sets of the WPT shared tasks is available (Liu et al.
2010).

As for the GIZA++ experiments, my aim was to simulate the conditions of my own
experiments as closely as possible. This meant using no resources except the given bitext,
and only default parameters, and the only preprocessing consisted of lowercasing the
texts and (for the English-Hindi and English-Romanian experiments only) removing all
but the first four characters of each word as a simple kind of stemming (see Section 2.3.6).
With GIZA++, the symmetrization method that gives the best result on the test set
for each experiment is chosen, in order to provide a baseline that is as strong as possible
given the conditions above. Due to limitations in the GIZA++ software, all sentences
longer than 100 tokens are discarded. This only affects a very small part of the training
set and is not expected to significantly affect the final results. The pipeline used in the

5Tt should be noted that this classification is not always easy. For instance, Fraser & Marcu (2005)
optimized one parameter using annotated data for the Romanian-English task they evaluated on and
optimize other parameters using annotated data for a closely related language (French). They note
“a substantial increase in AER” (p. 92) without this procedure. In questionable cases like this, I give
the other author(s) the benefit of the doubt, even though it makes my own results compete against
a more unfavorable baseline (see e.g. Table 3.4).
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3. Alignment through Gibbs sampling

Table 3.2.: Systems compared in this thesis. For the definitions of Sup(ervision) and
Res(ources), see the main text.

System Reference Sup. Res.
1+H+F This work (Section 3.2.1) no no
GIZA++ Och & Ney (2003) no no
LIU Holmqvist & Ahrenberg (2011) no no
ISI12 Fraser & Marcu (2005) no no
JHU Schafer & Drébek (2005) no no
UMIACS1  Lopez & Resnik (2005) no no
XRCE Dejean et al. (2003) no no
1+H+F+T This work (Section 4.1) no one
ProAlign Lin & Cherry (2003a) no one
UMIACS2  Lopez & Resnik (2005) no one
1+H+F+P This work (Section 3.2.1) no both
RACAI Tufis et al. (2005) no both
USheffield  Aswani & Gaizauskas (2005) no both
IS15 Fraser & Marcu (2005) yes no
Vigne Liu et al. (2010) yes no

GIZA++ experiments is 13h°33410 that is, three iterations of Model 1, followed by five
iterations of the HMM model, three iterations of Model 3, and ten iterations of Model
4. This is more than what Och & Ney (2003) used, again with the intention of obtaining
a strong baseline. The exception is the English-Swedish data, where the HMM model
turned out to produce better results, using the following configuration: 13A0.

3.2.6. Results

To illustrate the convergence properties of the models, the experiments in this chapter
were performed with an excessive number of iterations: in the order of 108/|S|, where
|S| is the number of parallel sentences in a given corpus. In a practical setting with
limited time and computational resources available, one would use considerably fewer
iterations.

Almost all experiments used the same pipelined approach, where the lexical-only model
(1) was initialized with alignments sampled from a uniform distribution, and the last
sample of alignments from this model was used for the combined lexical and word order
model (1+H), whose final sample in turn was used to initialize the model that also in-
cluded fertility parameters (14+H-+F). An equal number of samples was produced during
each step of the process. The only exception was the English-French experiment, where
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the fertility model does not lead to any improvements, so the last step of the pipeline is
omitted.

The baseline system (14+H+F, or 1+H for English-French) performed very strong com-
pared to previous results. For English-French (Table 3.3), English-Inuktitut (Table 3.5)
and English-Hindi (Table 3.6), this system outperformed any system using a comparable
amount of resources, and for Romanian-English (Table 3.4) and English-Swedish (Ta-
ble 3.7) it was close. In the case of English-Inuktitut, the baseline system even obtained
the best published results.

This is reassuring, since many of the other systems used complex models, often fine-
tuned for a particular language pair, whereas my baseline system used the same pa-
rameters for all language pairs. On the other hand, it is worrying that the model did
not improve upon the GIZA++ baseline for the English-Swedish alignment task. This
is likely due to simplifications in the model, primarily the exclusion of NULL words. It
seems that the strength of the Gibbs sampling algorithm used lies not in aligning long
bitexts with similar languages, but rather the more difficult case of shorter texts in
different languages.

Note that the largest data sparsity issues are found in the English-Inuktitut and
English-Hindi corpora, due to the polysynthetic nature of Inuktitut and the short English-
Hindi bitext, respectively. This should give the Bayesian version an advantage, and it
is indeed in these two cases that we see the largest gains over GIZA++ and other non-
Bayesian results.
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3.3. Collapsed and explicit Gibbs sampling

In order to gain some insights into the number of iterations required to obtain a given
level of accuracy, Figures 3.1, 3.2, 3.3 and 3.4 show how the AER varies over long runs
in different languages. The eight dotted lines in each graph represent independent runs,
while the solid line uses the averaged alignment probability marginals from those eight
runs.

First of all, it is clear from inspection that all through the training process, using the
averaged marginals is superior to even the best single run, and even more so compared
to the average single run. All of these curves are guaranteed to converge in the limit,
so the same improvement could also be obtained by running a single sampler for a
much larger number of iterations. However, these results show that averaging multiple
concurrent samplers in this way is a more computationally efficient option. The greatest
improvement is seen for the English-Hindi and English-Inuktitut corpora, which also
happen to be the corpora that suffer most from data sparsity. This results in a larger
proportion of word types, which, by chance, will be initialized with incorrect links that
are however consistent across several different sentences, and so very unlikely to change
during sampling given the sparse priors used. Unfortunately, time constraints made it
impossible to explore the effects of averaging in depth.

Second, we see that performance increased only very slowly after the first few iter-
ations, depending on the size of the training data. At the expense of some accuracy,
the learning process can be shortened considerably to be competitive with EM-based
algorithms in terms of computational efficiency.

3.3. Collapsed and explicit Gibbs sampling

Recall from Section 2.5.3 that in a collapsed Gibbs sampler, some variables are marginal-
ized out. In the word alignment models described so far, the marginalized variables are
the categorical distribution parameters, so that the only variables sampled are the align-
ment links.

An explicit sampler would have to sample these variables and the various categorical
distributions, of which the largest are the lexical translation distributions p:(f|e) where
the number of parameters is the product of the vocabulary sizes of the two languages.
For relatively small corpora, sampling the categorical distributions therefore dominates
the computational work during learning.

On the other hand, in a collapsed Gibbs sampler each alignment variable is conditioned
on all other alignment variables, including those previously sampled. This dependency
makes it difficult to parallelize the alignment process, which is becoming an increasingly
serious downside as the level of parallelism grows in modern computer architectures. An
explicit sampler, in contrast, can sample the categorical distributions in parallel, then
sample alignment variables for all sentences in parallel. Zhao & Gildea (2010) utilize
this parallelism in their word alignment algorithm where the expectation step of the EM
algorithm is computed using Gibbs sampling.

If explicit Gibbs sampling produces competitive results, it would be a very attractive
option. Unfortunately, to my knowledge there have been no published studies exploring
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Figure 3.3.: AER during training (English-Inuktitut), see Table 3.5.
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Figure 3.4.: AER during training (English-Hindi), see Table 3.6.
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Figure 3.5.: AER during training (English-Hindi), with collapsed sampling (bottom) and
explicit sampling (top).

collapsed versus explicit Gibbs sampling algorithms for the problem of word alignment.

3.3.1. Experiments

In order to test the feasability of explicit Gibbs sampling, I implemented an explicit
version of the algorithms from Section 3.2.1. Figure 3.5 shows the result of both variants
of the alignment algorithm on identical data. Since the categorical distribution sampling
required a time proportional to the vocabulary sizes of the two languages multiplied,
I chose to only perform this evaluation on a relatively short text (English-Hindi, see
Table 3.1) with a vocabulary of manageable size.

The same number of iterations (500 per model) and the same chain of models (1,
1+H, 14+H+F) were used in both cases, and it is clear from the figure that the collapsed
sampler performed much better. The explicit sampler quickly reached a certain level of
accuracy and then made no perceivable progress during the learning process. In contrast,
the collapsed sampler gradually improved over hundreds of iterations. To explain this
result, we can look at the leftmost part of Figure 3.5, where only lexical translation
distributions are used. Consider an example where the only instance of the source word
dog is incorrectly aligned to the target word Katze ‘cat.” In a collapsed sampler, the
alignment link for Katze is sampled conditioned on all other alignment links, excluding
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3.4. Alignment pipeline

the present, incorrect link. This means that the probability of aligning to dog is about
the same as the correct alignment to cat, which is as expected given that co-occurrence
is the only clue available to the algorithm.

On the other hand, the explicit sampler first samples a categorical distribution for the
translation of dog based on the incorrect alignment link, which (given a sparse Dirichlet
prior) is extremely likely to result in a categorical distribution where Katze has a much
higher probability than any other word, including the correct option in this case: Hund.
When the alignment variable is then sampled, the incorrect alignment to Katze is chosen
again with very high probability.

This resistance to moving between similar and equally probable solutions causes very
slow mixing, and even 1,500 iterations is not enough to find a noticeably better solution.
Note that the theoretical guarantees of the MCMC algorithm are met in both cases: as
the number of samples grows towards infinity, Katze aligns to dog and cat about the
same number of times. The difference is only that the collapsed sampler reaches this
distribution faster.

3.4. Alignment pipeline

Previous research with EM-based alignment models has shown that initialization through
a “pipeline” of successively more complex models is essential to good performance (Och
& Ney 2003, pp 36-37). Gal & Blunsom (2013) confirmed that this also holds for their
Bayesian versions of the IBM models using Gibbs sampling, but only for a single corpus
and only comparing two different pipelines.

In this section, I evaluate three configurations: a fully pipelined training (abbrevi-
ated 1+H+F), model 1 followed by HMM/fertility (abbreviated 1+HF), and the most
complex model with random initialization (abbreviated 1HF). Given an equal number
of iterations, pipelined training is actually faster since some of the time is spent with
simpler and computationally less demanding models. Therefore, as long as pipelined
training does not significantly decrease accuracy, we should prefer it. Figures 3.6 and
3.7 show that this is not the case, but rather that AER somewhat improves as the
pipeline gets longer. In spite of the very different characteristics in terms of size and
language similarity between these two datasets, the training curves are strikingly similar.
Based on these results, I continued to use fully pipelined training for the remainder of
the experiments in this thesis.

3.5. Choice of priors

Several of the IBM alignment models contain a large number of parameters, which make
the models prone to overfitting and sensitive to data sparsity. Various ways have been
tried to alleviate this problem, such as more compact reparameterizations (Dyer et al.
2013) or ad-hoc smoothing schemes to combat data sparsity (Och & Ney 2003, section
6.5).
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Figure 3.6.: AER during training (English-Swedish), using pipelines 1HF (dotted),
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Figure 3.7.: AER during training (English-Hindi), using pipelines 1HF (dotted), 1+HF
(half-filled) and 1-+H-+F (filled).
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A more systematic approach is to use a Bayesian model with hierarchical priors (see
Section 2.4.6), as was done by Gal & Blunsom (2013). For instance, if we use a word
order model p;(l|c(w;j—1)) that depends on the jump length ! = a; — aj—1 as well as the
word class ¢(f;) of word f;, we can assume a prior with f;(I) as its back-off distribution:

pj(lle(wj-1)) ~ PYP(d, o, p;(1))

where p;(l) only depends on the jump length [.

Yarin Gal (p.c.) recalls that there was some improvement when going from a non-
hierarchical to a hierarchical model for the Bayesian HMM model of Gal & Blunsom
(2013), but no figures have been published. In this section, I perform empirical evalua-
tions comparing corresponding hierarchical and non-hierarchical models.

3.5.1. Algorithms

There are many possible ways to turn a distribution conditioned on a number of variables
into a hierarchical model. I generally follow the hierarchical structures of Gal & Blunsom
(2013), but since our respective basic probability models differ, the hierarchical models
are also not equal.

The lexical distribution for each target word f depends on the source word e, with a
backoff to the target word distribution, and then to the uniform distribution U:

pe(fle) ~ PYP(d}, s, pi(f))
pt(f) ~ PYP(dt ) O‘Bv U)

For the word order model, I assume the jump length I = a; — aj_1 depends on the
word class bigram ¢(w;—1), c(w;) and the sentence length I with a backoff to the class
unigram c(w;) and length, then to the sentence length only, and finally to the uniform
distribution:

pj(”L C(wjfl) ~ PYP(dJIc’ Oél}ij(l"[))
p;(I|I) ~ PYP(dy, o7, p;(1))
p;(l) ~ PYP(d),a, U)

As for fertility parameters, there is considerable sparsity since separate fertility counts
are used for each word type. By using a common feritilty distribution as a prior for
individual word fertilities, we should be able to capture the general level of synthesis in
the source language:

pr(@le) ~ PYP(dl,af py(#))
pr(@) ~ PYP(df, g, U)

Finally, the hierarchical tag translation distribution is constructed in the same way as
the lexical translation distribution:

pp(tylte) ~ PYP(d}, af, py(ts))
pp(ty) ~ PYP(dg, o, U)
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3. Alignment through Gibbs sampling

This model introduces a number of new parameters: the discount and concentration
parameters, d and «, for each of the Pitman-Yor priors. These are sampled using slice
sampling (see Section 2.5.6), with a uniform prior for the discount d and an exponential
prior p(a) = Ae™® for the concentration parameters. This, of course, introduces yet
another set of new parameters—but the model performance is not very sensitive to the
values of A, and so they are all set to 1 except the prior for oz}, where it is necessary to
enforce sparsity by setting this prior to 100.

3.5.2. Evaluation setup

To test whether the models with hierarchical Pitman-Yor priors perform better than
those with the corresponding non-hierarchical Dirichlet priors, I evaluated each under
identical conditions. These differed from the evaluations in Section 3.2 in two ways.
First, the number of iterations was reduced, since more iterations resulted either in no
improvement or even a reduction of accuracy for the hierarchical models. Second, the
soft growing symmetrization (Equation (3.3)) optimized on the respective development
sets was used, rather than the soft intersection symmetrization (Equation (3.2)). This
is in line with most of the baselines, which also report the best result among multiple
symmetrization methods, and helps to ensure fair comparisons between different types
of algorithms.

For the two language pairs for which I had access to supervised PoS taggers, English-
French and English-Swedish, I also performed the corresponding experiment using the
output of these taggers. The tags were used both in the HMM model (H) to condition the
jump probabilities and in the tag translation model (P). In addition, lemmas (Swedish)
or stems (English) were used instead of the full word forms, further improving accuracy.

3.5.3. Results

Table 3.8 shows that the hierarchical models (with L superscripts) outperformed the
corresponding non-hierarchical models across the different corpora. Compared to the
previously published results on these data sets (summarized in Section 3.2.6), we can
see that the hierarchical models were quite accurate. In all cases except English-Swedish,
they achieved the lowest AER among unsupervised systems, and in several cases they
were on par with or better than semi-supervised systems or systems using language-
specific resources.

The main exception to this pattern is that the English-Hindi aligner of Aswani &
Gaizauskas (2005) performed better, because they had access to resources such as an
English-Hindi bilingual dictionary, a gazetteer of Hindi named entities, and a translit-
eration tool. This is particularly important since the English-Hindi parallel text is very
short, only 3,556 sentences, which makes unsupervised learning very challenging. The
Bayesian models were still much more accurate than the unsupervised baselines, and
even the semi-supervised Vigne system (Liu et al. 2010).

Due to the increased complexity of the hierarchical Pitman-Yor priors, alignment was
roughly three times slower than when using the non-hierarchical Dirichlet priors. This
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3.5. Choice of priors

tradeoff is important to keep in mind, since in some circumstances it would be better
to use simple Dirichlet priors with an increased number of iterations and/or increased
number of independent samplers that can be averaged.

Table 3.8.: Hierarchical Pitman-Yor priors (with L superscript) compared to the cor-
responding non-hierarchical Dirichlet priors (without superscript). Refer to
Section 3.2.6 for relevant baselines.

Model |A| |AnS| |AnP| P R F AER
English-French (5 iterations/model)

1+H 5361 3725 5086 949 922 935 6.3

1“+H" 5689 3775 5378 94.5 935 94.0 5.9

1+H+F+P 5830 3810 5530 94.9 944 946 54

1L+ HY+FE4PE 5675 3744 5471 96.4 92.7 945 5.1

Romanian-English (25 iterations/model)

1+H+F 3045 3274 3274 83.0 65.0 729 27.1
1b4HE 4303 3509 3509 81.5 69.7 752 24.8
English-Inuktitut (8 iterations/model)

1+H+F 446 237 428 96.0 80.9 87.8 10.0
1L+ HY4FL 532 257 511 96.1 87.7 91.7 6.9
English-Hindi (50 iterations/model)

1+H+F 1023 687 687 67.2 48.8 56.5 435
1L4HE 931 684 684 73.5 48.5 585 415
English-Swedish (5 iterations/model)

1+H+F 3679 2874 3160 85.9 86.0 86.0 14.0
1L+ HE 4 FE 3573 2882 3182 89.1 86.3 87.7 12.3
1+H+F+P 3529 2938 3201 90.7 88.0 89.3 10.6

1L+ HE4FE4PE 3457 2938 3207 92.8 83.0 90.3 9.6






4. Word alighment and annotation transfer

4.1. Aligning with parts of speech

Several authors, starting from Brown et al. (1993), have used word classes to aid word
alignment in various manners. Toutanova et al. (2002) showed that if both parts of
a bitext are annotated with PoS tags, alignment accuracy can be improved simply by
using a tag translation model p(t¢|t.) in addition to the word translation model p(f|e).

Good PoS annotations for both languages may be a realistic scenario when two well-
resourced languages with good supervised PoS taggers (or sufficient unannotated data
for unsupervised PoS taggers) are to be aligned, but not so much for the vast majority of
human languages. However, Yarowsky & Ngai (2001) showed that by selecting reliable
alignments, it is possible to accurately transfer PoS tag annotations from one language
to the other in a bitext. By simultaneously learning both alignments and target language
PoS tags, it should therefore be possible to benefit both tasks.

4.1.1. Naive model

The most direct approach to integrating PoS transfer into the Bayesian alignment
method described in Section 3.2.1 is to include a tag translation distribution pe(ty[te),
following Toutanova et al. (2002), and simultaneously sampling alignment variable a;
and the corresponding tag ¢; of each target word j.

There is however one crucial difference between the work of Toutanova et al. (2002)
and the present work: while they assume both source and target language tags to be
fixed, the point here is to learn the target-side tags. It is easy to see that (all other things
equal) the model just outlined would assign highest probability to solutions where all
target words have the same tag—which is clearly undesirable!

4.1.2. Circular generation

The naive model proposed above describes a situation where a source word generates a
target word, and the corresponding source word tag independently generates a tag for
the target word.

I have investigated a model where words and tags are instead generated in a “circle”
(see Figure 4.1), starting with the source word generating a target word, which generates
a target tag, which finally generates the source tag. Of these four variables, only the
target tag is unobserved.
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Source fire NOUN
P Pc ‘

Target | Feuer NOUN

oA

Figure 4.1.: Conditional dependencies in the circular generation model. All variables
except the target-side PoS tag (in gray) are observed. Non-lexical depen-
dencies are left out for clarity.

J
P(f,a,te,trle) oc [T pe(filea, ooty 1f)pelten, It ;) (4.1)
j=1

Equation (4.1) gives the total probability of an alignment under the most basic circular
model, which does not include word order or fertility. These are however easy to include
as separate factors (like IBM Model 1 in Equation (2.2) was extended to the HMM model
in Equation (2.4)), since they depend only on the alignment variables @ and not on the
lexical f or PoS tag t; variables.

Note that the final term, pc(teuj |tf;), depends on both the alignment variable a; and
the target-side tag t ;. While this coupling comes at the cost of sampling each aj, t; pair
requiring O(T- \e\) rather than O(T + \e|) operations, the goal is increased consistency
between tags and alignments, hopefully to the benefit of both.

4.1.3. Alternating alignment-annotation

Yarowsky & Ngai (2001) developed a method for annotation transfer, where PoS tags
were projected through word alignments (both assumed to be given), and selected subsets
of the projected tags were used to estimate, using different heuristics, the emission and
transition probabilities of a HMM tagging model for the target language.

They concluded that while projected tags were too noisy for training accurate tagging
models, very good models could be obtained by using tags from sentences with high-
probability alignments. Tag transition distributions in particular contain few parameters
and can be estimated reliably from small amounts of data, which allows a considerable
amount of recall to be traded for high precision in the projection step.

The simplest method to combine the PoS annotation transfer algorithm of Yarowsky
& Ngai (2001) with a PoS-aware alignment algorithm in the style of Toutanova et al.
(2002) would be to just perform them alternatively.

It is also possible to extend the Gibbs sampling alignment algorithms with ideas from
both of these works, resulting in the following scheme for sampling alignment and PoS
tag variables:
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1. Sample all alignments, given the current target PoS tags.

2. Estimate transition and emission parameters of a HMM given the current align-
ments.

3. Sample target PoS tags from the HMM.

From these samples, any of the marginalization methods from Section 2.5.5 may be used
to decide on the final alignment and/or PoS tags, whichever is desired.

Since the basic alignment algorithm is asymmetric, both alignment directions are
sampled in parallel in step 1 above. After this, the last such sample is symmetrized as
in Equation (3.2), and the resulting links are used to estimate the transition parameters
from the 50% most reliably aligned sentences, and the emission parameters from all
sentences. I use the anti-smoothing heuristic of Yarowsky & Ngai (2001) as well as the
affix-tree algorithm of Schmid (1994) to exploit morphological information. To capture
the fact that there are both suffixing and prefixing languages, both suffix trees and prefix
trees are tried, and the one resulting in the largest information gain on the training data
is used for the final tagging.

Annotation transfer for resource-rich languages has evolved considerably since the pio-
neering work of Yarowsky & Ngai (2001), and recent work exploits a variety of resources
in addition to parallel texts, e.g. crowd-sourced dictionaries (Tackstrom et al. 2013) or
label propagation with large monolingual corpora (Das & Petrov 2011) to improve ac-
curacy. Although some of these authors claim that their goal is to transfer annotations
to resource-poor languages, these languages may be “poor” only compared to English.
The most typical case among the 7,000 or so languages of the world is that there are no
electronic parallel texts, dictionaries, or even monolingual texts of reasonable size. For
the 1,000+ languages where electronic New Testament translations are available, this is
typically the only such resource useful in annotation transfer.

For this reason, I focus on methods that require only a short parallel text like the New
Testament. These methods will naturally not be competitive with specialized algorithms
for languages in the medium-to-rich resource range. The same applies to the method I use
for PoS tagging: whereas more advanced algorithms have been developed in the decades
since Schmid (1994), increased accuracy when learning from a high-quality annotation
does not necessarily translate into increased accuracy when learning from a small and
noisy set of transferred PoS tag annotations.

4.2. Evaluation

There are three ways of evaluating the alternating alignment-annotation method. First,
one could annotate the target language text with gold standard PoS tags and compare
these to the result of the annotation transfer. Unfortunately, I do not have access to any
such data (except for the study described in Section 4.3), but given the good performance
of supervised PoS taggers it is possible to automatically annotate the target language
text where a tagger is available, at the expense of some additional uncertainty.
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The second option is to use the model estimated from the parallel text to tag a mono-
lingual text that has gold standard PoS annotations. Since I work with the Universal
PoS Tags of Petrov et al. (2012), the Universal Dependency Treebank (McDonald et al.
2013) provides a suitable evaluation set.

Note that the first method estimates in-domain performance, while the second method
could also estimate out-of-domain performance if the genres differ between the parallel
text and the evaluation data.

Finally, we can also evaluate the general success of the PoS transfer by investigating
the change in alignment quality after the resulting PoS tags were introduced into the
alignment model (see Section 3.2.1.1). In applications where the PoS tags are not needed,
this is in fact the most important measure.

4.2.1. Alignment quality evaluation

In this evaluation, there is one natural baseline, the 1+H+F algorithm of Section 3.2.1
using lexical, word order and fertility variables. There is also one natural upper bound,*
1+H+F+P, which additionally includes high-quality PoS tags from supervised taggers
for both languages. Such taggers are however only available for both languages in the
English-French and English-Swedish tasks, so the remaining data sets unfortunately
contain no such figures. The alternating alignment-annotation method, 1+H+F+T), is
expected to score somewhere between the 1+H+F and 1+H+F+P models. In addition,
relevant results from previous work (repeated from Section 3.2) are also given.

In terms of alignment quality, it is clear that annotation transfer is beneficial for all
the language pairs evaluated: English-French (Table 4.1), Romanian-English (Table 4.2),
English-Inuktitut (Table 4.3), English-Hindi (Table 4.4) as well as English-Swedish (Ta-
ble 4.5). Please refer back to Section 3.2 for details on how these tables are to be
interpreted.

In all these evaluations the alternating alignment-annotation algorithm is comparable
to or better than the best systems using equivalent resources. This is very promising,
since many of those systems use a variety of dictionaries and other resources, whereas
the alignment-annotation system only has access to a PoS tagger for one of the languages
(English, in all these cases). The largest improvement can be seen in the English-Hindi
task, which due to the small size of the data and the fairly large difference between the
languages is the most difficult.

4.2.2. Annotation quality evaluation

While maximizing the accuracy of the transferred PoS tags is not my primary goal, it is
still useful to evaluate the level of performance achieved with the alternating alignment-
annotation. First of all, we might want to know what level of PoS tagging accuracy is
needed to give the alignment performance gains observed in Section 4.2.1. Second, it

!Technically, this is not a proper “upper bound” since it could be exceeded in theory, for instance, if
the joint PoS transfer and alignment algorithm produces tags that are in fact better than the actual
PoS tags of the target language for the purpose of guiding word alignment.
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Table 4.1.: English-French results (WPT-03 test set). [S| = 4038, |P| = 17438.
1,130,588 sentences.

Model Al |ANnS|] |AnP| P R F AER

Baseline (14+H) and alternating alignment-annotation (1+H+T) and using su-
pervised PoS tagging (1+H+P).

1+H 5359 3717 5134 95.8 92.1 939 58

1+H+T 5505 3751 5254 954 929 941 5.6

1+H+P 5542 3778 5263 95.0 93.6 943 5.6

Best previous results (comparable or fewer resources)

GIZA++ 4831 3531 4715 97.6 874 922 7.0

XRCE 90.1 93.8 919 8.5
Best previous results (allowing additional resources)

ProAlign 91.5 96.5 939 5.7
Vigne - - - 4.0

Table 4.2.: Romanian-English results (WPT-05 test set). |S| = |P| = 6201. 48,641
sentences.

Model |A| |ANS| |[AnP| P R F AER
Baseline (1+H+F) and alternating alignment-annotation (1+H+F+T)
1+H+F 3374 3070 3070 91.0 61.0 73.0 27.0
1+H+F+T 3447 3120 3120 90.5 62.0 73.6 26.4

Best previous results (comparable or fewer resources)

GIZA++ 3730 3161 3161 84.7 62.8 7T72.1 279

ISI2 87.9 63.1 735 26.6
RACAI 76.8 712 739 26.1
Best previous results (allowing additional resources)

Vigne - - - 247

Table 4.3.: English-Inuktitut results (WPT-05 test set). |S| = 293, |P| = 1972. 333,185

sentences.
Model Al |ANS| |AnP| P R F AER
Baseline (1+H+F) and alternating alignment-annotation (1+H+F+T)
1+H+F 598 267 559 93.5 91.1 923 7.3
1+H+F+T 630 273 595 94.4 932 93.8 6.0
Best previous results (comparable or fewer resources)
GIZA++ 342 170 306 89.5 58.0 70.4 25.0
JHU 96.7 76.8 85.6 9.5
JHU 84.4 922 88.1 14.3
Best previous results (allowing additional resources)
Vigne - - - 89

71



4. Word alignment and annotation transfer

Table 4.4.: English-Hindi results (WPT-05 test set). |S| = |P| = 1409. 3,556 sentences.

Model Al |ANnS| |AnP| P R F AER
Baseline (1+H+F) and alternating alignment-annotation (1+H+F+T)
1+H+F 712 606 606 85.1 43.0 57.1 429
1+H+F+T 817 677 677 829 48.0 60.8 39.2

Best previous results (comparable or fewer resources)

GIZA++ 984 615 615 62.5 43.6 51.4 48.6
UMIACS2 43.7 56.1 49.1 50.9

Best previous results (allowing additional resources)

Vigne - - - 448
USheffield 77.0 60.7 679 32.1

Table 4.5.: English-Swedish results (Europarl 700k sentences). |S| = 3340, |P| = 4577.
692,662 sentences.

Model |A| |AnS| |[AnP| P R F AER

Baseline (1+H+F), alternating alignment-annotation (14+H+F+T), and using
supervised PoS tagging (1+H-+F+P).

1+H+F 3183 2742 2933 92.1 82.1 86.8 13.0

1+H+F+T 3125 2774 2961 94.8 83.1 885 11.3

1+H+F+P 3262 2823 3034 93.0 84.5 88.6 11.3

Best previous results (comparable or fewer resources)

GIZA++ 3436 2890 3136 91.3 86.5 888 11.1

LIU 85.3 - - 126
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is useful to know what kind of accuracy can be expected when transfering annotations
to severely under-resourced languages, where the only resource available might be a
translation of the New Testament.

Table 4.6 shows the accuracy of PoS transfer with two rather different types of corpora:
large collections of parliamentary proceedings (roughly a million sentences each), and
pairs of translations from the New Testament corpus, which are roughly 8,000 verses
each. The out-of-domain figures are lower than current state of the art for unlimited-
resources PoS transfer for the given languages: Téckstrom et al. (2013) reported 88.3%
and 88.9% accuracy for English-French and English-Swedish respectively (but note that
due to very different evaluation setups, their figures are not directly comparable to
Table 4.6). What the results do show, however, is that jointly learning PoS tags and
alignments not only benefits alignment quality (as was shown in Section 4.2.1), but often
has a small positive effect on PoS accuracy. This tendency is not without exceptions,
though, and in several cases the difference is none or very small.

One possible reason for this could be that the PoS transfer algorithm is not very
sensitive to alignment quality, and the relatively modest gains in alignment quality
might not be enough to significantly increase PoS transfer accuracy. It is also important
to remember that a PoS tagging that is informative to the alignment process does not
necessarily have to be linguistically accurate. For instance, the German verb heissen ‘to
be named’ might be aligned frequently to the English noun name. If the tag for heissen
is (incorrectly) sampled as NOUN, this would increase the probability of correctly aligning
heissen and name, which in turn might make the PoS transfer model even more likely
to mis-tag heissen.

Compared to the evaluation on the target side of the bitext itself, accuracy is lower
when evaluated on the Universal Dependency Treebank test set (McDonald et al. 2013)
of the given language, which is expected since this data is not part of the bitext and
contains different genres than the bitexts. This effect is particularly large for the New
Testament experiments, since the model is trained on a genre that is very different from
the test data. A better morphological model in the PoS tagger could probably bridge
some of this difference, but the fact remains that out-of-domain PoS tagging is a difficult
problem.

Table 4.7 shows the accuracy of PoS transfer with the New Testament corpus, both
using multi-source (rightmost column) and single-source (all other columns) transfer. It
is clear that multi-source transfer was superior both to the median and usually even to
the single best of the 22 source texts.? The average accuracy (bottom row) increased
from the single-best result of 85.3% to the multi-source accuracy of 86.5%. The gap
to the median single-source accuracy of 81.5% is even greater: multi-source transfer
resulted in a 27% error reduction. The only systematic exception to this trend is when
transfering tags to English, where single-source transfer from the best translation (in
Swedish) gave somewhat better accuracy than multi-source transfer.

The accuracies in Table 4.7 are promising, because they show that high accuracy can

2Translations into the same language as the target are not used, so e.g. German “only” uses 22—8 = 14
source texts.
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Table 4.6.: Accuracy of PoS transfer, evaluated on the Universal Dependency Treebank
test set for the target language (UDT) or the test set of the parallel data
itself (Test), using tags from a supervised tagger as gold standard (when one
is available). The former contains (potentially) out-of-domain text, while
the latter obviously contains text from the same corpus and domain as the
training data. PoS transfer using 1+H+F alignments is used as a baseline,

to investigate the effect of joint alignment + PoS transfer.

Joint
Corpus UDT Test
English-French (WPT-03)  83.7% 85.9%
English-Swedish (Europarl) 84.5% 86.6%
English-German (NT) 73.4% 84.4%
English-Finnish (NT) 71.1% -
English-French (NT) 75.9% 82.4%
English-Indonesian (NT) 79.7% -
English-Ttalian (NT) 74.1% -
English-Spanish (NT) 75.6% -
English-Swedish (NT) 74.6% 86.4%
Swedish-English (NT) 71.8% 86.1%

be achieved even with the relatively short New Testament text, and in the absence of
any external resources such as dictionaries. Unfortunately, I was only able to evaluate
PoS tag accuracy for a small set of closely related languages, and we can assume that for
the majority of the 1,001 languages in the corpus accuracy would be considerably lower
if the same set of source languages was used. It would be highly desirable to include
PoS taggers from a more typologically diverse set of languages in these experiments, but

Baseline
UDT Test
82.7% 85.8%
84.2% 86.0%
73.4% 84.5%
69.0% -
76.0% 82.6%
76.4% -
73.6% -
76.3% -
74.3% 86.3%
70.6% 86.4%

time constraints have made this impossible within the scope of this thesis.
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4. Word alignment and annotation transfer

4.3. Tagging the Swedish Sign Language Corpus

The Swedish Sign Language Corpus (SSLC) (Mesch et al. 2014; Mesch & Wallin 2015) is
a corpus of Swedish Sign Language (SSL), containing 25 hours of recorded and partially
transcribed spontaneous conversation from 42 different signers. Its annotations include
(among other things) a gloss for each sign and a translation into Swedish, which in effect
makes it a parallel corpus of transcribed SSL and written Swedish. The version used
in my experiments contains 24,976 SSL tokens, which are not sentence-segmented, and
41,910 Swedish tokens divided into 3,522 sentences.

Segmenting spontaneous SSL conversation into sentences or utterances is not a trivial
task (Borstell et al. 2014), and there is currently no such segmentation in the corpus.
In order to be able to use sentence-based word alignment models, I follow Sjons (2013)
in using the Swedish sentences as a basis for segmentation. This is possible since both
translations and glosses are associated with time slots, so that SSL glosses overlapping
in time with a Swedish sentence can be segmented into a “sentence.”

The SSLC originally lacked PoS tag annotations, due to both the time required for
manual annotation and to theoretical problems in defining parts of speech in SSL. The
research survey of Ahlgren & Bergman (2006) presented a rough division into eight
parts of speech with some discussion of each: nouns, verbs, adjectives, adverbs, numer-
als, pronouns, conjunctions and prepositions. This classification is rather coarse, and I
follow it mainly to stay in line with previous work. It also happens to be a subset of
the “universal” tagset of Petrov et al. (2012), which could benefit future multilingual
investigations. Lars Wallin (p.c.) suggests an extended set of classes, distinguishing for
instance between simple and polysynthetic verbs.?

Ahlgren & Bergman’s classification was also used by Sjons (2013) in his preliminary
study of PoS induction in SSL, the only such study published to date. Since only
monolingual unsupervised methods were used, namely Brown clusters (Brown et al.
1992) and k-means clustering (MacQueen 1967), results were predictably poor given the
limited amount of data available.

In this study, I investigate whether transfer of annotation is a practical way of an-
notating SSLC with PoS tags, and whether jointly learning word alignments and PoS
tags can improve accuracy. While the SSLC is unique as a parallel corpus of SSL and
Swedish, it has a few shortcomings from the point of view of automatic word alignment
and annotation transfer: the lack of sentence segmentation on the SSL side, a fairly
non-literal translation into Swedish, and limited size. While the 96% accuracy reported
by Yarowsky & Ngai (2001) is clearly out of reach, I have a more modest goal of reaching
an accuracy high enough to make semi-automatic PoS annotation practical.

4.3.1. Data processing

The SSLC was annotated using the ELAN software (Wittenburg et al. 2006). ELAN
annotations are arranged into tiers, each containing a sequence of annotations with time

3The term “polysynthetic” in this context has been largely replaced by “classifier construction”, but is
used here for consistency with the SSLC documentation. See e.g. Emmorey (2003) for an overview.
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slots. For the present study, two types tiers are of interest: the signs of the dominant
hand (which, redundantly, also includes signs by the other hand during dominance re-
versal), and the Swedish sentences. Signs are transcribed using glosses, whose names are
most often derived from a corresponding word or expression in Swedish. Each gloss may
also have a number of properties marked, such as which hand it was performed with,
whether it was reduplicated, interrupted, and so on. The annotation conventions are
described in further detail by Wallin et al. (2014).

The first step of processing was to group SSL glosses according to which Swedish
sentence they overlap most with. Second, glosses with certain marks were removed:

e Interrupted signs (marked @%).
e Gestures (marked @g).
e Incomprehensible signs (transcribed as xxx).

Finally, some marks were simply stripped from glosses, since they were not considered
important to the current task.

e Signs performed with the non-dominant hand (marked @nh).

e Signs held with the non-dominant hand during production of signs with the dom-
inant hand. The gloss of the held sign (following a <> symbol) was removed.

e Signs where the annotator was uncertain about which sign was used (marked @xxx).
e Signs where the annotator was uncertain about the correct gloss (marked 0zzz).

In all, this is nearly identical to the procedure used by Sjons (2013, p. 14). Example 4.2
illustrates the output of the processing, with English glosses and translation added.

(4.2) STAMMA OCKSA PRO-1 PERF BARN BRUKA SE
be.correct also 1 PRF children usually watch
SAGA"TRAD PRO>nirv
Sagotradet 2

‘jag har ju barn ocksa—brukar du se pa Sagotradet?’
‘I also have children—do you watch Sagotradet?’
The Swedish translations were tokenized and PoS-tagged with Stagger (Ostling 2013),

trained on the Stockholm-Umea Corpus (SUC) (Ejerhed et al. 1992; Kéllgren 2006) and
Stockholm Internet Corpus (SIC).*

*nttp://www.ling.su.se/sic
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Table 4.8.: PoS tags in the SSLC, and their counterparts in SUC.

PoS SSLC SUC

Pronoun PN DT, HD, HP, HS, PS, PN
Noun NN NN, PM, UO

Verb VB PC, VB

Adverb AB AB, HA, IE, IN, PL
Numeral RG RG, RO

Adjective JJ JJ

Preposition PP PP
Conjunction KN KN, SN

4.3.2. Evaluation data

At the outset of the project, Carl Borstell and Lars Wallin manually assigned PoS tags
to the 371 most frequent sign glosses in the corpus. This was used for initial annota-
tion transfer experiments, and when the methods reached a certain level of maturity
the remaining gloss types were automatically annotated, and the resulting list of 3,466
glosses manually corrected by Borstell and Wallin. Thus the initial goal of using anno-
tation transfer to facilitate the PoS annotation was achieved, since all of the currently
transcribed SSLC data now has manual annotations.

In order to evaluate the performance of the annotation transfer algorithms, I used this
final set of 3,466 annotated types as a gold standard.

4.3.3. Tag set conversion

As previously mentioned, I used the eight PoS categories suggested by Ahlgren &
Bergman (2006) for SSL. The Swedish side was tagged using the SUC tagset, whose
core consists of 22 tags (Kéllgren 2006, p. 20). For direct tag projection and the tag
translation priors in the circular generation model, the SUC tags were translated as in
Table 4.8.

4.3.4. Task-specific tag constraints

Some sign glosses in the SSLC contain information that is relevant for their PoS.

e Proper nouns are marked with @en, and always receive the NOUN tag.

e Polysynthetic signs (Wallin 1994) are marked with @p, and always receive the VERB
tag.

e Pronouns are glossed using PRO- or POSS-, and always receive the PRON tag.
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Table 4.9.: Token-level PoS tagging accuracy, using direct projection from the final align-
ment (projection) or for the joint models, the sampled PoS tag variables
(model). Note that in the former case, the PoS tag variables are ignored
except during the alignment process. Figures given are averages + stan-
dard deviation estimated over 64 randomly initialized experiments for each

configuration.
Types Tokens
Project Model Project Model
baseline 58.4+0.5% 122+0.6% 75.3+0.7% 10.8+3.6%
constraints 58.4+0.4% 60.7+0.4% 75.1+0.8% 58.1+1.0%
circular 64.7+0.5% 68.3+04% T7.4+08% T77.6+0.7%
circular + bigrams 64.8+0.3% 684+0.3% 77.3+£0.7% 77.6+0.7%
circular 4+ constraints 69.1+04% 77.1+£0.3% 79.7+0.6% 78.7+0.6%
alternating 56.8+0.5% 56.8+0.5% 73.1+0.9% 73.44+0.8%

alternating + constraints 64.1 +0.6% 75.7+04% 76.2+0.9% 77.1+0.7%

e Glosses whose names correspond to a Swedish lemma with an unambiguous PoS
in the SALDO morphological lexicon (Borin & Forsberg 2009) always receive that
tag.

All of these constraints except the last have very high precision but low recall. The last
constraint assumes that the SSL signs whose glosses have names borrowed from Swedish
words behave like these, which is not always the case. For instance, Swedish has a large
open class of adjectives, whereas in SSL adjectives form a smaller, closed class. Apart
from this, the constraint is rather accurate since signs have been disambiguated during
the glossing process, so that instances of the same sign might have received different
glosses depending on which PoS it was used as in a given instance.

4.3.5. Experimental results and analysis

In the experiments, different variations of the circular generation method were compared
to the alternating alignment-annotation method. The particular implementation used
in these experiments predates the one described in Section 4.1.3, deviating from it in
two significant ways: no affix trees were used (this would be redundant, given the task-
specific constraints), and only one alignment direction was used.

Table 4.9 shows the token-level accuracy for different models. Note that signs are
assumed to belong to a single PoS, so that tags are assigned to types and token-level
figures are derived from this by multiplication with the type frequency. To my surprise,
the best result was obtained by using the circular model, with the alternating model
close behind. It is also clear that using the task-specific tag constraints made a big con-
tribution to these scores, and without these constraints the gap between the circular and
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alternating models increased considerably. This outcome is interesting in light of evalu-
ations on other data by myself for the New Testament (NT) corpus, and by Yarowsky
& Ngai (2001) for the larger Canadian Hansards corpus (English-French), both of which
speak in favor of the robust transfer method of Yarowsky & Ngai (2001) that is used in
the alternating alignment-annotation algorithm.

One possible explanation for this result is the relatively small difference in accuarcy
between the direct projections (first column of Table 4.9) and the models’ PoS tags
(second column). Whereas Yarowsky & Ngai (2001) reported an error rate of 24% for
direct projection and 4% for robust transfer, there was virtually no difference when
using the alternating alignment-annotation method on the SSLC. This is probably due
to the data set itself, which was small (around 25,000 tokens) and consisted of unedited
spontaneous conversation with plenty of disfluency.

Yarowsky & Ngai (2001) assume that it is possible to train a good bigram HMM tagger
from projected data, which constitutes the only coupling between the word alignments
and the final PoS tags. In contrast, the circular model samples each alignment link and
PoS tag together, favoring consistency given a direct projection assumption.

Looking at the circular+bigram row of Table 4.9, we can see that introducing tag
bigram dependencies into the circular model hurt token-level accuracy. The reason
for this seems to be that the bigram model introduced a strong bias towards common
PoS tags (nouns and verbs), which decreased token-level accuracy by mis-tagging some
common pronouns and function words, but actually increased type-level accuracy (not
shown) somewhat since these open-class tags were more common overall.

Perhaps the most important conclusion about annotation transfer that could be made
from this experiment is that the choice of method depends crucially on the data at hand,
and in some instances the simple circular generation model can be the best choice.

4.4. Lemmatization transfer

During the study described in Section 4.5, the need for a multilingual lemmatization or
stemming tool emerged. As discussed in Section 2.3.6, such a tool can also be used to
improve alignment performance by reducing data sparsity. Due to time constraints no
proper evaluation has been undertaken, and the purpose of this section is mainly to pro-
vide essential background to Section 4.5. Nevertheless, an informal evaluation has shown
that the method presented performs reasonably well for a variety of languages. Since
simple concatenative morphology is assumed, however, phenomena like stem alterations
or fusional morphology are not handled. Generalization to other types of morphology
as well as a proper evaluation is left to future work.

The model that was used was a Bayesian segmentation model in the spirit of Goldwater
(2007, Chapter 4), but with multilingual supervision akin to Yarowsky et al. (2001).
In short, each target-language word form was “mirrored”® through the lemmas of the
source language(s) it was aligned to, returning a set of word forms in the target language
that were also translated by the same source language lemma(s). One of the problems

SLike the “semantic mirroring” of Dyvik (2005).
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with most monolingual unsupervised morphology induction approaches is that, a priori,
any two vocabulary items are potentially inflections of the same lexeme. This makes it
plausible that spe is the stem of both spend and speak, even though the words are clearly
unrelated. By using the mirror images from a lemmatized translation, it is possible to
filter out nearly all of the similar but unrelated words, so that the algorithm can make
stronger assumptions about the remaining candidates. For instance, the mirror image
of spends might be: {spend, spending, spends, consume, used}. Given this set, it is
straightforward to identify the stem spend, which in turn gives the suffixes -ing and -s.

For each target language word form w; there is a latent variable s; which represents
the stem of w;. These stems generate the mirror images of their respective word forms
so that the probability of a word/stem pair 7 is:

P(wi,si)= [ »pw']s)

w’' €M (w;)
where

(1 — po)p(prefiz)p(stem)p(suffix) if stem is a substring of word
p(word|stem) =

Po otherwise

and the three distributions over prefixes, suffixes and stems are categorical distributions
with Dirichlet process priors, in these experiments with parameter a = 0.001 for the first
two distributions and a = 0.1 for the stem distribution. The intuition between these
parameter values is that stems form an “open” class of morphemes, while prefixes and
suffixes are “closed” and contain relatively few members. Note that the segmentation is
uniquely determined by the stem, by the simple rule that w’ is split around the leftmost
occurrence of s;. If s; does not occur in w’, there is also a pg probability of generating an
unrelated word form, in order to handle for instance synonymity and alignment errors.
A value of py = 107° has turned out to give reasonable results. Note that the same word
form can occur in several different mirror images, and thus has to be generated multiple
times by the model. Consistency between multiple generations is encouraged (but not
enforced) through the categorical distributions. Inference in the model is performed
through ten iterations of Gibbs sampling, similar to Goldwater (2007, p. 43).

4.5. Lexical typology through multi-source concept transfer

While linguistic typology has traditionally focused on how structural or phonetic proper-
ties vary across languages, the field of lexical typology investigates the mapping between
words and semantic domains across languages. For instance, the concepts of TREE and
FIRE are expressed using different words in most of the world’s languages, while a num-
ber of languages spoken on the Australian continent use the same word (see Figure 4.5).
This is an instance of colexification in the sense of Francois (2008, p. 170):

A given language is said to colexify two functionally distinct senses if, and
only if, it can associate them with the same lexical form.
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This definition intentionally circumvents the often difficult distinction between polysemy
and semantic vagueness, and provides an operationalizable way to explore the lexical
structure of languages without having to consider the actual forms of words.

Two different examples can be found in Figures 4.2 and 4.3, showing languages with
STONE-MOUNTAIN and DIE-BLOOD colexification. Both cases are localized to one or a few
regions, while almost unattested in the rest of the world. Each shape/shade combination
represents a particular language family, according to the top-level classification of Ham-
marstrom et al. (2014). In the case of DIE-BLOOD, although a fairly large geographical
area is covered, all of the languages are Sino-Tibetan and the actual word forms are
similar.% This indicates either a genetic explanation or possibly borrowing. For STONE-
MOUNTAIN, the situation is different. There are a few different areas (in central Africa,
southern Africa, Australia, parts of South America) where this colexification is frequent,
but in all these cases there is a broad representation of language families and word forms,
which suggests that this is an areal phenomenon (or rather, several independent such
phenomena).

Most of the colexifications discussed here have been previously studied. TREE-FIRE(-
FIREWOOD) was discussed in depth for a large sample of Papuan and Australian lan-
guages by Hendery et al. (forthcoming). Aikhenvald (2009) similarly discussed EAT-
DRINK-SMOKE colexification in Manambu (a Sepik language spoken in Papua New Guinea)
and in other languages of the area. Urban (2012) covered patterns of colexifications for
a large number of concepts and languages. Brown (2013b,a) has studied ARM-HAND and
HAND-FINGER colexification and has made these data sets public. Other studies focus
on how different parts of the color space are colexified (Kay & Maffi 2013a,b).

The traditional tools of lexical typology are lexica, word lists and, when available,
human informants. Except for languages with well-structured digital lexica (which List
et al. (2014) have utilized), this is a time-consuming manual process. Parallel texts have
also been applied to this problem in the past; Wélchli & Cysouw (2012), for instance,
use manually extracted examples from a subset of the New Testament in 101 different
translations to explore the semantics of motion events.

My goal in this study is to automate the process of finding expressions of semantic
concepts across a wide range of languages, by automatic word alignment from a number
of source texts to each of the texts in the languages under study. To do this, semantic
concepts are defined using word forms in the source languages. For instance, to find
instances of the concept HAND given English, German and Chinese as source languages,
one can (approximately) conclude that words linked to English hand, German Hand
and Chinese F represent this concept. This information can then be used in exploring
patterns of colexification. The method presented rests on a number of assumptions,
which should be made explicit because they are sometimes violated:

e Compositionality: Idiomatic expressions like the English to lend somebody a
hand, which does not involve the semantic concept HAND, are a potential source of
error. To some extent this can be countered using multiple source languages, since

5There is only a single case attested outside this area: Sumerian, an extinct isolate.

82



4.5. Lexical typology through multi-source concept transfer

only instances where the concept HAND is intended are likely to be consistently
expressed with translation equivalents of the English hand across several languages.

e Literal translation: Since concepts that may be expressed with the same word
naturally tend to be rather close semantically, it is often possible to convey roughly
the same meaning using either of two concepts. For instance, where some trans-
lations have “he who has an ear” others might have “he who can hear,” thereby
making a comparison between the concepts EAR and TO HEAR difficult.

e Word-to-word translation: Since the underlying alignment algorithm is word-
based, it becomes difficult to identify colexification when the concepts are not
expressed with a single word. Exceptions to this assumption can be found in
languages with noun incorporation, where the concept is expressed by a single
morpheme inside a complex word, or, at the other extreme, in languages where
the concept is expressed using a multi-word expression.

In order to explore the feasibility of this method for large-sample lexical typology, I
evaluated the results against two existing databases: the WALS chapter on HAND-ARM
(Brown 2013b) and the ASJP database for TREE-FIRE and STONE-MOUNTAIN (Wichmann
et al. 2013).

4.5.1. Method

When defining concepts, it is desirable to avoid idiosyncrasies in particular languages
or translations, in order find instances of each concept in the text that are likely to
be translated consistently across languages. This suggests that it would be best to use
a large and diverse sample of languages to define the concepts, but this ambition is
somewhat hampered by practical concerns. In my experiments, two translations each in
English, Swedish, Mandarin Chinese and Vietnamese were used as source texts. These
languages are chosen because good supervised lemmatizers were available (English and
Swedish) or because no such tool was needed due to the isolating nature of the languages
(Chinese and Vietnamese). High-quality PoS tags were used for English and Swedish,
which were used in the concept definitions to avoid some homographs, such as the English
verb/noun pair (to) stone. Each concept was defined by specifying the lemma in a
subset of the available languages, as well as (optionally) the PoS. In the case of common
homographs that can not be readily separated from the intended lexeme, the form in a
particular language was sometimes omitted entirely. This was mostly a problem in one
of the Mandarin translations, where missing tone marks result in an excessive number of
homographs for most monosyllabic words. Table 4.10 shows the definitions used for some
concepts, where the Mandarin shu ‘tree’ is omitted because it has common homophones
in the corpus.

The source texts were automatically word-aligned using the alternating alignment-
annotation method described in Section 4.1.3. Any word that was aligned to at least
k of the concept word forms per text (on average) was considered an instance of the
concept, assuming that it made up a proportion of at least r of the total links from
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stone-mountain: 139 languages/varieties

Figure 4.2.: Languages with STONE-MOUNTAIN colexification. Each combination of

84

shape and shade represents a particular language family, according to the
Glottolog classification (Hammarstrom et al. 2014). The purpose of this
map is to illustrate the geographic and genealogical distribution of colexifi-
cation, and the data was taken from ASJP (Wichmann et al. 2013) rather
than from the method presented here.
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die-blood: 28 languages/varieties

Figure 4.3.: Languages with DIE-BLOOD colexification. Each combination of shape and
shade represents a particular language family, according to the Glottolog
classification (Hammarstrom et al. 2014). The purpose of this map is to
illustrate the geographic and genealogical distribution of colexification, and
the data was taken from ASJP (Wichmann et al. 2013) rather than from
the method presented here.
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Table 4.10.: Example definitions of four concepts.

Language MOUNTAIN STONE TREE FIRE

English mountain  stone  tree  fire
Swedish berg sten trad  eld
Mandarin  shan shitou (sht)) huo

the concept word forms. The particular values used for k and r control the tradeoff
between precision and recall, where high values of both favor precision, and low values
favor recall. In other words, high values result in a very conservative classifier that only
makes a guess when the number of instances found is large enough. Conversely, low
values of k and r result in a classifier that makes guesses based on shaky evidence and
is prone to misclassification. In the evaluation reported here, k = 2 and r = 1/8. Given
more data a higher value of k£ would have been desirable in order to increase precision,
but since there are so few instances of some of these concepts, this would decrease recall
to unacceptable levels.

4.5.2. Evaluation

Although there was a large number of potential test cases, it turned out that most of
them had to be discarded for one of the following reasons:

1. The concepts occur too rarely or not at all in the New Testament.

2. The concepts are too frequently collocated, like EAT and DRINK, so that they are
difficult to separate during alignment.

3. The colexification occurs rarely or not at all in the language sample available.

There were three suitable colexification patterns which occurred in at least ten languages
in the intersection between the evaluation set (WALS or ASJP) and the New Testament
corpus: HAND-ARM, TREE-FIRE and STONE-MOUNTAIN.

The correctness of WALS and ASJP were assumed in my evaluation, but one should
keep in mind that this is only approximately true. For instance, Japanese is classified as
having identical words for HAND and ARM by Brown (2013b), but I have been informed
by a linguist who is also a native speaker of Japanese that this appears to be a mistake
in WALS (Yoko Yamazaki, p.c.). The algorithm correctly identified that F is most
commonly used for HAND while i is used for ARM. The reason seems to be that F
is listed as an (obscure) translation of ARM in some dictionaries. If this is a general
tendency in the WALS data, it would help to explain why HAND-ARM recall is so much
lower than the other cases in Table 4.11.

These results are clearly not perfect, but are sufficient for identifying a likely set of
candidates which can be explored in greater depth through other means. It can also
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Table 4.11.: Agreement between algorithm and ASJP/WALS. L is the set of languages
identified as colexifying a given concept by the algorithm, and G is the
gold standard set. The gold standard consists of languages in both the New
Testament corpus and the external data source (ASJP or WALS), the size
of which is given in the Sample column.

Concepts |IL| |LNG| |G| Sample Precision Recall
STONE-MOUNTAIN 24 9 12 821 38% 5%
TREE-FIRE 15 11 14 821 73% 79%
HAND-ARM 51 27 92 225 53% 29%

be sufficient for drawing preliminary conclusions, such as that the languages identified
as colexifying TREE and FIRE are mostly spoken in Papua New Guinea and belong
to different families, indicating an areal phenomenon (cf. Figures 4.4 and 4.5). The
patterns discovered can then be explored using more precise—but also much more time-
consuming—methods.

4.5.3. Limitations

The method that was used for this study has several apparent limitations. First, it is
highly dependent on the particular text used as source material. If a concept is not
present in the text, it is impossible to investigate it using this method. Even concepts
that are present can be difficult to investigate, if they occur so rarely that it is difficult
to identify them accurately, or if they frequently co-occur with other concepts. For
instance, it is very difficult to study EAT-DRINK colexification with the New Testament
since these are often expressed in the same sentences, making it difficult to differentiate
between words expressing them, which in turn leads to a high rate of false positives.
This particular problem could in some cases be alleviated by excluding verses where
both concepts occur, but then there might not be a sufficient number of instances left
to make a reliable match.

Furthermore, this method rests on the assumption that we can define a concept using
lemmas from a few languages, and that we can identify equivalent words in other lan-
guages through parallel texts. There are many cases in which this assumption is broken.
For instance, where one English version might have “eat,” another has “take food,” and
this complicates automated studies of EAT-FOOD colexification.

Biases in the translations will also affect the result. With the New Testament, this
results in very poor coverage for, among others, the native languages of Australia and
North America. In the case of TREE-FIRE (Figure 4.4), this means that the method
presented does not discover that the pattern actually extends beyond Papua, into the
Australian continent (Figure 4.5, see also Hendery et al. (forthcoming)).
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tree-fire: 23 languages/varieties

Figure 4.4.: Languages with TREE-FIRE colexification, according to the algorithm pre-
sented. Each combination of shape and shade represents a particular lan-
guage family, according to the Glottolog classification (Hammarstrom et al.
2014). All languages are contained within the area of the map.
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tree-fire: 64 languages/varieties

Figure 4.5.: Languages with TREE-FIRE colexification, according to ASJP (Wichmann
et al. 2013). Each combination of shape and shade represents a particular
language family, according to the Glottolog classification (Hammarstrém
et al. 2014). Only a handful of languages are outside the area of the map,
scattered around the world.
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5.1. Interlingua alignment

Word alignment is normally defined between two languages, that is, bitext alignment.
This is natural in many common applications such as single-source MT, but the recent
appearance of parallel corpora with many languages and applications that go beyond
MT leaves us with the question of how to align parallel texts of more than two languages.

Section 2.3.2 discusses some previous approaches that use information from more than
two languages to perform word alignment. I introduce another approach, referred to here
as interlingua alignment (Ostling 2014).

The basic idea behind this family of methods is to learn a single abstract representation
of the parallel text, to which all languages are aligned separately. A special case of
interlingua alignment is the use of a bridge language, to which the texts in all other
languages are aligned. This approach assumes that the bridge language text contains all
relevant information in all the different translations, an assumption which is clearly too
strong (see Figure 5.1).

Instead of using a fixed text as bridge language, the bridge language is learned along
with alignments to all the translations in a parallel text. Ideally, this interlingua repre-
sentation will then represent the information contained in all of the translations in the
parallel text, which makes aligning to it easy (Figure 5.2).

I earlier presented a method for learning this Interlingua through Gibbs sampling
of interlingua tokens (Ostling 2014). The model essentially consists of n Dirichlet-
multinomial IBM model 1 alignment pairs (as described in Section 2.5.3), one for each
of the L languages being aligned. The interlingua is treated as the source language,

... it rained fire and brimstone from heaven ...

?
... regnade eld och svafvel af himmelen ...

N

... da regnete es Feuer und Schwefel vom Himmel ...

Figure 5.1.: Bridge language alignment. Note that the (Swedish) bridge language text
does not include the dummy subject present in the other languages (English
it, German es), which makes a satisfactory alignment impossible.
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.. it rained fire and brimstone from heaven ...
.. regnade eld och svafvel af himmelen ...
.. da regnete es Feuer und Schwefel vom Himmel ...

it es eld

fire | Feuer
vy N
~ B A @ A -
/ \ AR
and und
rained Tregnete och
regnade

Figure 5.2.: Interlingua alignment (partial). Unlike the bridge language approach in
Figure 5.1, the dummy subject is represented (as a square) so that the
languages that use it can align to it.

assumed to generate all of the other L languages.

In addition to sampling the alignment variables a; (Algorithm 2), the interlingua
tokens (or concepts) e; are also sampled, based on the current alignments. The effect of
this is to make the interlingua tokens tend towards consistency with the words they are
aligned to.

ple; = ela,e_;, f) x pele_; Hp (@, f01a" e_;, f l>) (5.1)

where p(e|e_;) is a CRP prior! for concepts with concentration parameter a:

plele_s) = — -{a e =0 (5.2)

n+a |ne ifne>0

The second factor describes the probability of adding, for each language [, a concept
e with zero or more alignment links. For every interlingua concept e and language
l, we have a Dirichlet-multinomial lexical translation distribution pt ( fle). Any given
interlingua token e; is aligned to a set of language tokens, which we need to consider
when sampling e;:

of
a o fl>|a e f(l)) H Hk(iai"rnf-‘rk—l (5.3)
reti=o Ih (S ag +np) + k-1

In hindsight, the general Pitman-Yor CRP would have been more suitable than the special case
(Dirichlet process, with zero discount) I used previously (Ostling 2014), since its parameters can be
chosen so that the distribution of token frequencies more closely resembles the Zipf distribution seen
in natural languages—and presumably the interlingua. See Section 2.4.5 for further discussion and
references. In practice, this does not appear to matter much, since the second term of Equation (5.1)
far outweighs the prior.
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where ¢(f) = |{j : aj =i A f; = f}] is the number of times a particular target language
type f is aligned to e;. Since it is uncommon in practice with multiple tokens of the
same type in a single sentence linked to one and the same interlingua token, ¢(f) rarely
exceeds 1.

The structure of this model is in fact similar to that of Snyder et al. (2009), except
that the application of the latter is completely different in that it generates multilingual
PoS tags, given a word-aligned parallel corpus. In that model, the multilingual PoS tags
fill the same function as the interlingua tokens in my model, but instead of generating
words directly, they assume multilingual tags generating (through fixed word alignment
links) monolingual PoS tags, which in turn generate the words.

Computing Equation (5.1) requires O(L - |E|- | f|) operations, where L is the number
of languages, |E| is the number of interlingua concepts, and | f| is the average number
of tokens in the different target language texts f ). For the New Testament corpus
described in Section 2.1, with 1,142 translations, this means roughly 10'2 high-level
operations for a single iteration of sampling e.

Instead of assuming the interlingua e generates each translation f @it is possible to
reverse the alignment direction and make the opposite assumption: the interlingua is
generated (independently) by the translations. This requires us instead to evaluate a
large number of probabilities of the form p£l>(6| f), which can be sped up considerably
by using the fact that p,(&l)(e|f) = ¢, a constant, for most values of e (those that are
never linked to f). Unfortunately, this variant of the model assigns high probability
to solutions where all interlingua tokens are identical, which is clearly not a desirable
solution.

5.1.1. Evaluation: Strong’s numbers

For bitext alignment there are established evaluation metrics (Och & Ney 2003; Mi-
halcea & Pedersen 2003). These are based on the availability of gold-standard word
linkage matrices for sentence pairs. With the interlingua alignment models described in
this chapter, such an evaluation would be difficult. There are two conceivable ways of
applying standard evaluation metrics to an interlingua alignment: evaluating pairwise
alignments between individual languages, or evaluating pairwise alignments between the
interlingua and each language.

5.1.1.1. Language-language pairwise alignments

The first way is to use (or generate, from whatever annotation is available) pairwise
linkage matrices for each combination of languages, as well as pairwise alignments using
the interlingua alignments as a bridge. There are, however, drawbacks to this approach:
it is quadratic in the number of languages, and it is not obvious how to interpret and
summarize the metrics obtained from all these pairwise alignments.
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5.1.1.2. Interlingua-language pairwise alignments

Since the interlingua is constantly changing, it is unreasonable to demand a human-
annotated gold standard for an interlingua-language bitext. However, the potential for a
number of evaluations linear in the number of languages is appealing. I have previously
described such a method for evaluating interlingua alignments of the New Testament
corpus annotated with Strong’s numbers (C)stling 2014).

5.1.1.3. Clustering-based evaluation with Strong’s numbers

Strong’s numbers refer to the numbering in the King James Bible concordance of James
Strong (1822-1894) and are used to map English words to the corresponding roots in the
original texts. These numbers have later been added to other translations, and currently
nine translations with Strong’s numbers are available in the NT corpus. Cysouw et al.
(2007) were the first to use these annotations to evaluate word alignments, although
only for pairwise alignments.

We can abstractly view interlingua word alignment as a clustering problem. Each
interlingua concept is a cluster, and all word tokens from a given language aligned to it
are members of this cluster. Thus, we have one clustering for each language. Strong’s
numbers also define a clustering: each number is a cluster, and all tokens annotated
with it are members of the cluster. Given this clustering view of the problem, we can
now for each language compare the interlingua clustering with the clustering of Strong’s
numbers using standard clustering evaluation measures.

The Normalized Mutual Information (NMI) measure (Strehl & Ghosh 2003), also
reinvented? as the V-measure by Rosenberg & Hirschberg (2007), is defined as:

2.1(C, D)

NMI(C, D) = )+ (D)

(5.4)
where I(C, D) is the mutual information between clusterings C' and D, and H(C') is the
entropy of clustering C. For a clustering C' which contains clusters ¢;, we can view C' as
a distribution, intuitively representing the probability that a randomly chosen element
happens to be in cluster ¢;:
leil
¢)=—
ple) =~

where n is the total numbers of elements. This allows the standard definition of entropy
to be used:

H(C)= - Zp(cz-) log p(c:)

2 The equivalence was pointed out and proved by Becker (2011, pp 165-166). There are two versions
of the measure, one of which uses the arithmetic mean (Equation (5.4)) and is equivalent to the
V-measure, and another which uses the geometric mean \/H(C)H (D). The figures reported here

and earlier (Ostling 2014) use the arithmetic mean.
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The joint probability of two clusters ¢; and d; from clusterings C' and D over the same
set of elements can be defined as:

_ |Ci ﬂd]'|

p(civdj) n

so that the mutual information can be defined as usual:

- iV 10w PLCids)
1(C, D) = ;p(c“d]”"g p(e)p(d;)

Finally, there are some practical considerations when converting a text with Strong’s
numbers into a clustering. As discussed by Cysouw et al. (2007), not all words have
Strong’s number annotations, some have several, and the scopes of annotations are not
given. They handle this by defining different types of agreement between alignments
and Strong’s numbers. While this offers a more precise picture, it comes at the expense
of increased complexity compared to single-dimensional metrics. I bypass this problem
by simply disregarding all tokens that do not have exactly one Strong’s number. There
are a number of theoretical objections one could have to this approach, maybe most
importantly that it creates a bias towards evaluating “easy” words with one-to-one
correspondences (between Greek and the language in question, at least). It is also
not guaranteed to achieve full recall, since a number could potentially also refer to
some preceeding word(s). In the end, the purpose of the evaluation is to compare the
performance of different algorithms and parameters on the same data, which means that
absolute figures matter less than relative ones, and a systematic bias can be tolerated.

Evaluation of word alignment is a difficult and controversial topic, for several reasons.
As with most linguistic classification tasks, there is no obvious and universally applicable
definition of what makes a “good” word alignment. Since word alignment is primarily
an enabling technology, where the results are not used directly but rather as input
for other tasks like SMT, the usefulness of evaluating word alignments on their own
is questionable. Several authors have shown that common word alignment evaluation
metrics correlate poorly with SMT evaluations (Vilar et al. 2006; Fraser & Marcu 2007;
Holmqvist & Ahrenberg 2011). Nevertheless, unless one has a particular application
in mind, there is little choice when exploring word alignment algorithms other than
comparing to human-annotated alignments using some kind of similarity measure.

5.1.1.4. Bitext evaluation with Strong’s numbers

In order to use the New Testament corpus for evaluating bitext alignments, it is useful to
define a transformation from Strong’s numbers to the common format with an alignment
matrix with three-valued entries: no link, probable link, or sure link. There are two
important complications in this conversion:

1. If multiple tokens with the same Strong’s number occur in a verse, the alignment
becomes ambiguous.
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2. In the corpus annotations, the scope of a Strong’s number is sometimes ambiguous.
If one Greek lemma is translated using a multi-word expression, only the last word
is annotated.

Therefore, a sequence of words without Strong’s number annotations followed by an
annotated word is ambiguous, as the annotation could apply to a (possibly empty)
subset of the preceding words. To capture this uncertainty, probable links are added
between all words in the two languages that might share the same number in this way.
The first case, when a Strong’s number occurs multiple times in a verse, is also handled
by using probable links. Sure links are reserved for the case when a given Strong’s
number is only possible for one word per verse.

In practice, using this method results in about 2-3 probable links per token on average,
but only around 0.2 sure links per token. This overgeneration of probable links and
undergeneration of sure links impacts different evaluation measures in different ways.
The sure-only and probable-only F-scores (Fs and Fp) will be unusually low under
these conditions, while the AER and normal F-score are not severely affected.

5.2. Experiments

The first question to ask about the interlingua alignment model presented in this chapter
is whether learning an interlingua results in better-quality word alignments, compared
to simply picking a language and using that as an interlingua. In order to answer
this question, I performed an experiment where the nine languages of the NT corpus
containing Strong’s number annotations were aligned. The interlingua representation
was initialized in two separate experiments to either the English King James Version,
or to a Mandarin Chinese translation (which was not among the nine translations to
be aligned). Since the interlingua was constantly changing, the alignment variables
(which are of primary interest) were not compatible between different samples, so I used
simulated annealing (Section 2.5.4) rather than Rao-Blackwellization (Section 2.5.5).
To initialize the alignments, 200 alignment sampling iterations were performed with
A = 1/7 increasing linearly from 0 to 2, followed by two iterations with 7 — 0 to find a
locally optimal alignment to the initial interlingua (English or Chinese). Finally, 1000
iterations with 7 = 1 followed by two iterations with 7 — 0 were performed with joint
interlingua and alignment sampling. The learning curve of this last phase is shown in
Figures 5.3 and 5.4, plotting the NMI of each language against the number of sampling
iterations. Note that they start with a sharp drop (not shown in the figures, but see
the left columns of Table 5.1), when sampling noise is introduced to the locally optimal
alignments from the previous step. At the end there is a corresponding sharp increase,
as we move to another (usually better) local optimum. The start and end points of
these figures are given in Table 5.1, where we can see that in all but two cases there
are improvements. The exceptions are for English texts, when English is used as the
initial interlingua. Naturally, it is difficult to find a better representation for an English
text, than the same (or very similar) English text. By comparing the English-initialized
and Chinese-initialized interlingua, it is also clear that the latter has more room for
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Table 5.1.: Normalized mutual information with respect to Strong’s numbers, using
alignment only (A) or joint alignment + interlingua learning (A+J), for mod-
els initialized using English or Mandarin.

English Mandarin

A A+J | A A+J
deu 0.817 0.824 | 0.708 0.788
eng 0.854 0.851 | 0.714 0.800
engo 0.834 0.833 | 0.708 0.790
fra  0.807 0.816 | 0.712 0.783
ind 0.774 0.785 | 0.710 0.770
inda  0.791 0.803 | 0.721 0.786
nld 0.839 0.850 | 0.724 0.809
por 0.807 0.813 | 0.709 0.782
rus  0.792 0.800 | 0.699 0.772

improvement. This is to be expected, since most of the evaluated languages are closely
related to English. Given a sufficient number of iterations, the interlingua representations
are guaranteed to be sampled from the same distribution. There are two reasons why
this is not achieved in practice, resulting in the differences observed between the English-
initialized and Chinese-initialized models: the insufficient number of sampling iterations
(due to computational constraints), as well as the fact that the lengths of the interlingua
sentences were chosen to be identical to those of the language used for initialization.

These runs each required about 350 hours to complete, on a 4-core Intel Core2 system
running at 2 GHz. As can be seen in Figure 5.3, even 1,000 iterations was not enough
for convergence. The computational intensity unfortunately limits the amount of exper-
imentation that can be done, especially for large corpora such as the full NT corpus with
its 1,142 translations.

5.3. Word order typology

Since the work of Greenberg (1963), word order features have played a central role in
linguistic typology research. There is a great deal of variation across languages, and
interesting interactions between different features that may hint at cognitive constraints
in the processing of human language. A full theoretical discussion on word order typology
is beyond the scope of this thesis, but the interested reader is referred to e.g. Dryer (2007)
for an overview of the field.

I have applied the interlingua alignment method to investigate different word order
features across the many languages of the New Testament corpus, by means of high-
precision multi-source annotation transfer via the interlingua.
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Figure 5.3.: Interlingua alignment model training, initialized with a Mandarin Chinese
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Figure 5.4.: Interlingua alignment model training, initialized with the English King
James Version.

98



5.3. Word order typology

5.3.1. Method

The first step consisted of using supervised systems for annotating the source texts
with Universal PoS Tags (Petrov et al. 2012) and dependency structure in the Universal
Dependency Treebank format (McDonald et al. 2013). For PoS tagging, I used the
Stanford Tagger (Toutanova et al. 2003) followed by a conversion step from the various
language-specific tagsets to the “universal” tags of Petrov et al.. Next, I used the
MaltParser dependency parser (Nivre et al. 2007) trained on the Universal Dependency
Treebank using MaltOptimizer (Ballesteros & Nivre 2012).

From the source texts, PoS and dependency annotation was transferred to the inter-
lingua representation. Since alignments were noisy and low recall was acceptable in this
task, I used an aggressive filtering scheme: dependency links must have been transferred
from at least 75% of source texts in order to be included. For PoS tags, which were only
used to double-check grammatical relations and should not have impacted precision neg-
atively, the majority tag among aligned words was used. Apart from compensating for
noisy alignments and parsing errors, this method also helped to catch violations against
the direct correspondence assumption (Hwa et al. 2002) by filtering out instances where
different source texts use different constructions, favoring the most prototypical cases.

Finally, annotations were transferred directly from the interlingua to each of the texts
in the corpus. This part of the process was the most prone to error, since alignment errors
or violations of the direct correspondence assumption translate directly into incorrect
annotations.

5.3.2. Data

The New Testament corpus was used, with ten English translations as source texts.
Ideally more languages should be used, but at the time these experiments were performed
I only had access to a preprocessing pipeline for English and German, and using some
German translations in addition to the English ones did not lead to improved results.

5.3.3. Evaluation

In order to evaluate the results, data from World Atlas of Language Structures (WALS)
(Dryer & Haspelmath 2013) was used. Only languages represented both in the New
Testament corpus and the WALS data of a particular feature were used. A summary
of this data is presented in Table 5.2. Although the New Testament corpus is a biased
convenience sample, when comparing the values of the first column (for all languages in
the WALS samples) with the second column (for languages in both the WALS samples
and the New Testament corpus), we find that they are remarkably similar apart from a
slight overrepresentation of verb-subject order in the New Testament subset.

Each word order feature was coded in terms of dependency relations, with additional
constraints on the parts of speech that can be involved (e.g. subject-verb relations must
be between a noun and a verb). The frequencies of all possible word orders for a feature
were then counted, and for the purpose of evaluation the most common order was chosen
as the algorithm’s output. Although the relative frequencies of the different possible
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Table 5.2.: Summary of the five features from WALS used in the experiment. The first

100

column contains counts for all languages in the sample of each WALS feature,
while the second column only includes the subset of languages which are both
in WALS and the New Testament corpus.

81A: Order of Subject, Object and Verb (Dryer 2013e)

523 142 SOV
465 132 SVO

88 40 VSO
23 8 VOS
10 3 OVS

4 1 OSV

167 32 No dominant order
1280 358 Total

82A: Order of Subject and Verb (Dryer 2013d)

1115 283 SV
176 75 VS
97 25 No dominant order
1388 383 Total

83A: Order of Object and Verb (Dryer 2013c)

655 168 OV
658 201 VO
92 16 No dominant order
1405 385 Total

85A: Order of Adposition and Noun Phrase (Dryer 2013b)

541 155 Postpositions
479 154 Prepositions
8 0 Inpositions
55 18 No dominant order
28 3 No adpositions
1111 330 Total

87A: Order of Adjective and Noun (Dryer 2013a)

341 97 Adjective-Noun
823 217 Noun-Adjective
101 34 No dominant order
4 0 Only internally-headed relative clauses
1269 348 Total
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word orders were discarded for the sake of comparability with WALS, it was of course
also possible to use these frequencies to estimate the level of freedom a given language
allows in expressing a particular grammatical relation. Although an interesting topic,
a detailed investigation into this is unfortunately not possible within the scope of this
thesis.

In cases where there were multiple translations into a particular language, information
was aggregated from all these translations into a single profile for the language. This
was problematic in some cases, such as when a very large amount of time separated two
translations and word order characteristics have evolved during that time. However,
since the typical case was a single translation per language, and since WALS generally
does not contain different data points for the different language varieties used, I leave
the topic of historical change within a language to future research.

Not all languages and features can be easily classified into a particular word order.
For instance, a language might lack adpositions altogether, or might not have any strong
preference for either subject-verb or verb-subject order. These languages were excluded
from the evaluation for the given feature. This meant that the task was made somewhat
easier by excluding difficult cases, although in theory nothing prevents one from trying
to detect and report these cases, too.

5.3.4. Results

Table 5.3 shows the agreement between the algorithm’s output and the corresponding
WALS chapter for each feature. The first thing to notice is the high level of agreement,
even though the sample consisted mainly of languages unrelated to English, from which
the dependency structure and PoS annotations were transferred. As expected, the lowest
level of agreement is observed for WALS chapter 81A, which has a lower baseline since
it allows six permutations of the verb, subject and object, whereas all the other features
are binary. In addition, this feature requires that two dependency relations (subject-
verb and object-verb) have been correctly transferred, which substantially reduces the
number of relations available for comparison.

Since the accuracy of this method depended on the accuracy of the dependency link
projections and word alignments, and the interlingua was fairly close to the English
translation used to initialize it, one would expect the languages most different from
English to be the most problematic. One way in which this can be observed is through
looking at uncommon word orders. The one OSV language in the data (Nadéb, a
Nadahup language from Brazil) was misidentified as SVO, probably due to the few
projected transitive clauses (23). There were also three languages incorrectly classified
as OSV, according to WALS, although one of them (Kaapor, a Tupian language from
Brazil) does have OSV and SVO order according to the Ethnologue (Lewis et al. 2014).
Similarly, the six languages identified as OVS were also done so incorrectly, according to
WALS, although the Ethnologue indeed lists one of them (Barasana-Eduria, a Tucanoan
language from Colombia) as an OVS language. It is unfortunate that the most exotic
languages from the perspective of word order are also the ones most difficult to identify
accurately.
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Table 5.3.: Agreement between the algorithm and WALS. N is the number of languages
that are both in the relevant WALS chapter and in the New Testament cor-
pus, and where the WALS classification does indicate a particular ordering.
For this reason, these counts are lower than the total counts in Table 5.2,
which also include languages where a dominant ordering cannot be estab-
lished. All features are binary except 81A, which can take six values.

Agreement N Feature
85.7% 342 81A: Order of Subject, Object and Verb
90.4% 376 82A: Order of Subject and Verb
96.4% 387 83A: Order of Object and Verb
95.1% 329 85A: Order of Adposition and Noun Phrase
83.0% 334 8TA: Order of Adjective and Noun

The fact that sources sometimes differ as to the basic word order of a given language
makes it evident that disagreement is not necessarily due to errors in the transfer process.
Another example of this can be found when looking at the order of adjective and noun in
some Romance languages (Spanish, Catalan, Portugese, French and Italian), which are
all classified as having noun-adjective order (Dryer 2013a). It turned out that adjective-
noun order in fact dominated in the NT with about two thirds of instances in all of
these languages. This result was confirmed by manual inspection, which required a
look at linguistic explanations for the discrepancy.® Both orders were very common,
and arguments could be made for considering either (or none) of them as dominant.
In favor of the noun-adjective order one could argue that it is normally less marked.
Additionally, the common (but closed) class of quantifying adjectives uses adjective-
noun order, so if these are excluded the case for noun-adjective is strengthened. On the
other hand, adjective-noun was more common by a large margin, so if we take overall
frequency in the New Testament as the deciding factor, it would be difficult to claim
that noun-adjective is dominant. It is of course also important to note that the New
Testament uses a rather formal register, and caution is warranted in generalizing from
a single doculect (Cysouw & Good 2013).

5.3.5. Conclusions

The promising results from this study show that high-precision annotation transfer is
a realistic way of exploring word order features in very large language samples, when a
suitable parallel text is available. Although the WALS features on word order already
use very large samples (over a thousand languages), using my method with the New
Testament corpus contributes about 600 additional data points per feature—albeit with
a small chance of error.

3Thanks to Francesca Di Garbo for helping with this.
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The real strength of this method lies in the speed of execution, which allows the
typologist to investigate previously unexplored features in seconds, using a sample of
over a thousand languages. Moving beyond word order, there are numerous structural
features of language that could be explored in a similar way, particularly if morpheme-
based rather than word-based alignment is performed.
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6. Conclusions

My main conclusion from the work presented in this thesis is that Bayesian models for
word alignment offer an accurate, flexible and computationally efficient alternative to
the EM-based algorithms that have been in use ever since the work of Brown et al.
(1993). The simplicity of the Gibbs sampling algorithm used for inference allows the
models to become more complex while keeping inference efficient and simple, and I have
exploited this in two different ways: by improving bitext word alignment performance
by performing Part of Speech (PoS) annotation transfer jointly with alignment, and by
extending the bitext model to a multilingual word alignment model.

In addition to these developments related to word alignment as such, I have also ex-
plored several novel applications based on word-aligned parallel texts. First, I used joint
alignment and annotation transfer in order to help providing the Swedish Sign Language
Corpus with PoS tags, to my knowledge this is the first time automatic PoS annotation
has been performed of a sign language corpus. Second, I have successfully applied my
multilingual word alignment model to automatic investigations in word order typology,
and in the field of lexical typology used the joint PoS transfer and word alignment al-
gorithm for an automated colexification study. Apart from the new word alignment
models presented, I would argue that my results further strengthen the case for the use
of computational models in diverse areas of linguistic research.

In order to encourage adaptation of the methods I have developed and evaluated,
the software implementation is available for download under a copyleft license.! For
purposes of reproducibility, data and software from the experiments described in this
thesis are archived at the Department of Linguistics, Stockholm University.

6.1. Future directions

Before speculating about the future of word alignment methods, we should take a step
back and think about if there is one. Recent advances in neural network technology have
led to models for Statistical Machine Translation (SMT) that directly map sentences
from one language to another through a vector representation of the whole sentence,
without the use of word alignments (Kalchbrenner & Blunsom 2013; Sutskever et al.
2014). As these new models are becoming competitive with traditional models based on
word alignment, there is a real possibility that computing word alignments will become
an obsolete problem, at least from the point of view of its historically most important
application: SMT. In this thesis I presented several other applications based on word

lhttp ://www.ling.su.se/spacos
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alignments, but only the future can tell how many of those problems will continue to
depend on word alignments.

That said, perhaps the most fundamental future project is how to move from word
alignment to a more general alignment at several levels. The assumption that texts
in different languages can be accurately linked at the word level is never entirely true,
and the gap between this assumption and reality becomes even more acute when we
try to align unrelated and structurally different languages. On the one hand, words are
often too coarse to link accurately, because in most languages they tend to consist of
multiple morphemes that could—or should—be linked individually rather than according
to which word they are attached to. On the other hand, the word level may also be too
fine-grained to be informative, when the correspondence is not between individual words
but rather between whole constructions.

At a more technical level, we can ask which types of problems could and should be
solved together with word alignment. I treated the case of PoS tagging in Chapter 4,
and briefly touched upon lemmatization. There are however plenty of other candidates:
syntactic parsing, morphological analysis, word sense disambiguation, and so on. A
human translation of a text (let alone thousands of translations, as in the case of the
New Testament) constitutes a fantastic amount of manual annotation, which we should
not let go to waste.
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A. Languages represented in the New
Testament corpus

The following is a list of languages in the New Testament corpus described in Sec-
tion 3.2.4. Languages are listed with 3-letter codes and names according to the ISO
639-3 standard, and are grouped according to the top-level classifications of Lewis et al.

(2014).

Afro-Asiatic

Ambharic (amh)
Bana (bcw)

Chadian Arabic (shu)
Dangaléat (daa)
Dawro (dwr)
Eastern Oromo (hae)
Gamo (gmv)

Gofa (gof)

Gude (gde)

Hausa (hau)

Hdi (xed)

Traqw (irk)

Kafa (kbr)
Kambaata (ktb)
Kamwe (hig)

Kimré (kqp)

Konso (kxc)

Koorete (kqy)

Male (Ethiopia) (mdy)
Maltese (mlt)
Masana (mcn)

Matal (mfh)

Mbuko (mqb)

Merey (meq)
Mofu-Gudur (mif)
Muyang (muy)
Mwaghavul (sur)
Parkwa (pbi)

Sebat Bet Gurage (sgw)
Somali (som)

South Giziga (giz)
Tachelhit (shi)
Tamasheq (taq)
Tigrinya (tir)

Wandala (mfi)
Wolaytta (wal)
Zulgo-Gemzek (gnd)

Algic

Algonquin (alq)
Moose Cree (crm)
Severn Ojibwa (ojs)

Altaic

Azerbaijani (aze)
Gagauz (gag,
tions)

Halh Mongolian (khk)
Kalmyk (xal)
Kara-Kalpak (kaa)
Karachay-Balkar (krc)
Kazakh (kaz)

Khakas (kjh)

Kirghiz (kir)

Kumyk (kum)

Russia Buriat (bxr)
Southern Altai (alt)

2 transla-

Tatar (tat)

Tuvinian (tyv)

Uighur (uig, 2 translations)
Uzbek (uzb)

Arai (Left May)
Ama (Papua New Guinea)
(amm)

Arauan

Paumari (pad)

Australian

Burarra (bvr)
Djambarrpuyngu (djr)
Kuku-Yalanji (gvn)
Wik-Mungkan (wim)

Austro-Asiatic

Eastern Bru (bru)

Parauk (prk)

Vietnamese (vie, 4 transla-
tions)

Austronesian

’Auhelawa (kud)
Achinese (ace)
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Agusan Manobo (msm)
Agutaynen (agn)
Alangan (alj)

Alune (alp)
Arifama-Miniafia (aai)
Arosi (aia)

Balantak (blz)

Balinese (ban)
Bambam (ptu)

Banggai (bgz)

Batad Ifugao (ifb)
Batak Angkola (akb)
Batak Dairi (btd)
Batak Karo (btx)
Batak Simalungun (bts)
Batak Toba (bbc)
Biatah Bidayuh (bth)
Bima (bhp)

Bola (bup)

Bolinao (smk)

Botolan Sambal (sbl)
Brooke’s Point Palawano
(plw)

Bugawac (buk)
Buginese (bug)

Buhid (bku)

Bunama (bdd)
Bwanabwana (tte)
Caribbean Javanese (jvn)
Cebuano (ceb, 2 transla-
tions)

Central Bikol (bcl)
Central Dusun (dtp)
Central Malay (pse)
Central Sama (sml)
Chamorro (cha)
Cotabato Manobo (mta)
Da’a Kaili (kzf)
Dawawa (dww)

Dobu (dob)

Duri (mvp)

Eastern Tawbuid (bnj)
Fijian (fij)

Gapapaiwa (pwg)
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Gilbertese (gil)
Gorontalo (gor)

Halia (hla)

Hanunoo (hnn)
Hawaiian (haw)
Hiligaynon (hil)

Hote (hot)

Tamalele (yml)

Iban (iba)

Iduna (viv)

Tloko (ilo)

Indonesian (ind, 9 transla-
tions)

Iraya (iry)

Ttawit (itv)

Iwal (kbm)

Jarai (jra)

Javanese (jav)

Kahua (agw)
Kambera (xbr)
Kankanaey (kne)
Kapingamarangi (kpg)
Kara (Papua New Guinea)
(leu)

Keapara (khz)

Keley-I Kallahan (ify)
Kinaray-A (krj)
Koronadal Blaan (bpr)
Kuanua (ksd)
Kwara’ae (kwf)
Lampung Api (ljp)
Ledo Kaili (lew)

Lote (uvl)

Ma’anyan (mhy)
Madak (mmx)
Madurese (mad)
Mag-antsi Ayta (sgb)
Mainstream Kenyah (xkl)
Makasar (mak)
Malagasy (mlg)

Malay (individual language)
(zlm, 4 translations)
Mamasa (mqj)
Manam (mva)

Mangga Buang (mmo)
Manggarai (mqy)
Mangseng (mbh)
Maori (mri)

Mapos Buang (bzh)
Maranao (mrw)
Marik (dad)
Marshallese (mah)
Maskelynes (klv)
Matigsalug Manobo (mbt)
Mayoyao Ifugao (ifu)
Mbula (mna)

Mekeo (mek)

Mengen (mee)
Mentawai (mwv)
Minangkabau (min)
Misima-Panaeati (mpx)
Molima (mox)
Mongondow (mog)
Motu (meu)

Muna (mnb)

Mutu (tuc, 2 translations)
Muyuw (myw)
Nakanai (nak)

Napu (npy)

Nehan (nsn)

Ngaju (nij)

Nias (nia)

North Tanna (tnn)
Nyindrou (lid)

Obo Manobo (obo)
Owa (stn)

Paici (pri)

Pamona (pmf)
Pampanga (pam)
Pangasinan (pag)
Paranan (prf)

Patep (ptp)

Patpatar (gfk)
Plateau Malagasy (plt)
Ramoaaina (rai)

Sabu (hvn)

Samoan (smo)

Sangir (sxn)



Saposa (sps)

Sarangani Blaan (bps)
Sasak (sas)

Seimat (ssg)

Sinaugoro (snc)

Sio (xsi)

Sissano (sso, 2 translations)
Southwest Tanna (nwi, 2
translations)

Suau (swp)

Sundanese (sun)
Sursurunga (sgz)

Tagalog (tgl, 2 translations)
Takia (thc)

Tangoa (tgp)

Tawala (tbo)

Termanu (twu)

Timugon Murut (tih)
Tinputz (tpz)
Toraja-Sa’dan (sda)
Tungag (lem)

Tuwali Ifugao (ifk)

Uab Meto (aoz)

Ubir (ubr)

Uma (ppk)
Uripiv-Wala-Rano-Atchin
(upv)

Waima (rro)

Waray (Philippines) (war)
Western Bukidnon Manobo
(mbb)

Western Penan (pne)
Wuvulu-Aua (wuv)

Yabem (jae)

Aymaran

Central Aymara (ayr, 2
translations)

Barbacoan

Awa-Cuaiquer (kwi)
Chachi (cbi)

Colorado (cof)

Border

Amanab (amn)
Waris (wrs)

Cahuapanan

Chayahuita (cbt)

Cariban

Akawaio (ake)
Apalaf (apy)
Bakairi (bkq)
Galibi Carib (car)
Hixkarydna (hix)
Macushi (mbc)
Patamona (pbc)
Wayana (way)

Chibchan

Border Kuna (kvn)
Bribri (bzd)

Buglere (sab)
Cabécar (cjp)
Central Tunebo (tuf)
Ngébere (gym)

San Blas Kuna (cuk)
Teribe (tfr)

Chipaya-Uru
Chipaya (cap)

Chocoan

Epena (sja)

Northern Embera (emp)

Woun Meu (noa)

Constructed language

Esperanto (epo)

Creole

Baba Malay (mbf)
Belize Kriol English (bzj)
Bislama (bis)

Eastern Maroon Creole
(djk)

Haitian (hat)

Hawai’i  Creole  English
(hwc)

Jamaican Creole English
(jam)

Krio (kri)

Kriol (rop)

Morisyen (mfe)

Nigerian Pidgin (pcm)
Pijin (pis)

Saint Lucian Creole French
(acf)

Sango (sag)

Saramaccan (srm)

Sea Island Creole English

(gul)

Sranan Tongo (srn)

Tok Pisin (tpi)

Dravidian

Kannada (kan)
Malayalam (mal)

East Bird's Head-Sentani

Manikion (mnx)
Meyah (mej)
Moskona (mt;)

East Geelvink Bay
Bauzi (bvz)

East New Britain

Qaget (byx)
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Eastern Trans-Fly

Bine (bon)
Wipi (gdr)

Eskimo-Aleut

Eastern Canadian Inuktitut
(ike)

Kalaallisut (kal)

North Alaskan Inupiatun

(esi)
Northwest Alaska Inupiatun
(esk)

Eyak-Athabaskan

Carrier (crx)

Dogrib (dgr)

Gwich’in (gwi)
Southern Carrier (caf)
Western Apache (apw)

Guajiboan

Cuiba (cui)
Guahibo (guh)
Guayabero (guo)

Guaykuruan
Kadiwéu (kbc)
Mocovi (moc)
Pilagd (plg)
Toba (tob)
Hardkmbut

Amarakaeri (amr)

Hmong-Mien

Hmong Daw (mww)
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Huavean

San Mateo Del Mar Huave
(huv)

Indo-European

Afrikaans (afr, 5 transla-
tions)

Ancient Greek (to 1453)
(gre, 2 translations)
Armenian (hye)

Awadhi (awa)

Breton (bre)

Bulgarian (bul)

Caribbean Hindustani (hns)
Catalan (cat, 2 transla-
tions)

Church Slavic (chu)
Croatian (hrv, 2 transla-
tions)

Czech (ces, 2 translations)
Danish (dan, 3 translations)
Dari (prs)

Dutch (nld, 5 translations)
English (eng, 10 transla-
tions)

Faroese (fao)

Fiji Hindi (hif)

French (fra, 6 translations)
German (deu, 12 transla-
tions)

Gujarati (guj)

Hindi (hin)

Icelandic (isl)

Iranian Persian (pes)

Irish (gle)

Italian (ita, 2 translations)
Latin (lat)

Latvian (lav, 2 translations)
Lithuanian (lit)
Macedonian (mkd)
Maithili (mai)

Marathi (mar)

Middle English (1100-1500)
(enm, 2 translations)
Modern Greek (1453-) (ell,
2 translations)

Northern Kurdish (kmr)
Norwegian Bokmal (nob)
Norwegian Nynorsk (nno, 2
translations)

Ossetian (oss)

Plautdietsch (pdt)

Polish (pol, 3 translations)
Portuguese (por, 8 transla-
tions)
Romanian (ron)
Russian (rus,
tions)

Serbian (srp)
Sindhi (snd)
Sinte Romani (rmo)
Slovak (slk)
Slovenian (slv)

3 transla-

Spanish (spa, 11 transla-
tions)

Swabian (swg)

Swedish (swe, 6 transla-

tions)

Tajik (tgk)

Tosk Albanian (als, 2 trans-
lations)

Ukrainian (ukr)

Vlax Romani (rmy, 2 trans-
lations)

Welsh (cym, 2 translations)

Iroquoian

Cherokee (chr)

Japonic

Japanese (jpn)



Jean

Apinayé (apn)
Kaingang (kgp)
Kayapé (txu)
Xavante (xav)

Jicaquean

Tol (jic)

Jivaroan

Achuar-Shiwiar (acu)
Aguaruna (agr)
Huambisa (hub)
Shuar (jiv)

Karaja

Karaja (kpj)

Khoisan

Nama (Namibia) (naq)

Language isolate

Basque (eus, 3 translations)
Camsé (kbh)
Candoshi-Shapra (cbu)
Chiquitano (cax)
Cofan (con)

Korean (kor)

Kuot (kto)

Rikbaktsa (rkb)

Sulka (sua)

Ticuna (tca)

Urarina (ura)

Waorani (auc)
Yuracare (yuz)

Maipurean
Ajyininka
(cpe)

Apurucayali

Apurina (apu)

Ashéninka (cni)
Ashéninka Pajonal (cjo)
Caquinte (cot)

Garifuna (cab)

Ignaciano (ign, 2 transla-
tions)

Machiguenga (mcb)
Nomatsiguenga (not)
Parecis (pab)

Piapoco (pio)

Pichis Ashéninka (cpu)
Tereno (ter)
Trinitario (trn)
Ucayali-Yuria
(cpb)
Wapishana (wap)
Wayuu (guc)
Yanesha’ (ame)
Yine (pib)
Yucuna (ycn)

Ashéninka

Mapudungu

Mapudungun (arn)

Matacoan

Iyojwa’ja Chorote (crt)
Maca (mca)

Wichi Lhamtés Giiisnay
(mzh)

Wichi Lhamtés Nocten
(mtp)

Maxakalian

Maxakal{ (mbl)

Mayan

Achi (acr)

Aguacateco (agu)

Chol (ctu, 2 translations)
Chorti (caa)

Chuj (cac, 2 translations)
Huastec (hus, 2 transla-
tions)

Ixil (ixl, 2 translations)
K’iche’ (que, 2 translations)
Kaqchikel (cak, 7 transla-
tions)

Kekehi (kek)

Lacandon (lac)

Mam (mam, 4 translations)
Mopédn Maya (mop)

Popti’ (jac, 2 translations)
Pogomchi’ (poh, 2 transla-
tions)

Q’anjob’al (kjb)

Tabasco Chontal (chf)
Tektiteko (ttc)
Tojolabal (toj)
Tzutujil  (tzj,
tions)

Tzotzil (tzo, 4 translations)
Uspanteco (usp)

Western Kanjobal (knj)
Yucateco (yua)

2 transla-

Misumalpan

Mayangna (yan)
Miskito (miq,
tions)

2 transla-

Mixe-Zoquean

Coatlén Mixe (mco)
Francisco Leén Zoque (zos)
Highland Popoluca (poi)
Isthmus Mixe (mir)
Juquila Mixe (mxq)
Mazatlén Mixe (mzl)
Tlahuitoltepec Mixe (mxp)
Totontepec Mixe (mto)

Mosetenan

Tsimané (cas)
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Nambiquaran

Southern Nambikuara

(nab)

Niger-Congo

Adamawa Fulfulde (fub)
Adele (ade)

Adioukrou (adj)
Akoose (bss)

Anufo (cko)

Bafia (ksf)

Bafut (bfd)

Bambara (bam)
Bekwarra (bkv)

Bembe (bmb)
Bete-Bendi (btt)
Bimoba (bim)

Bissa (bib)

Boko (Benin) (bqc)
Bokobaru (bus)

Bomu (bmq)

Buamu (box)

Buli (Ghana) (bwu)
Bulu (Cameroon) (bum)
Busa (bgp)

Cameroon Mambila (mcu)
Cerma (cme)

Chopi (cce)
Chumburung (ncu)
Dan (dnj)

Deg (mzw)

Delo (ntr)

Denya (anv)

Digo (dig)

Dii (dur)

Ditammari (thz)
Djimini Senoufo (dyi)
Doyayo (dow)

Duruma (dug)

Dyula (dyu)

Eastern Karaboro (xrb)
Ekajuk (eka)
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Ewe (ewe)
Farefare (gur,
tions)

Fon (fon)
Gen (gej)
Gikyode (acd)
Giryama (nyf)
Gitonga (toh)
Gogo (gog)
Gokana (gkn)
Gourmanchéma (gux)
Guinea Kpelle (gkp)

Gusii (guz)

Hanga (hag)

Haya (hay)

Hehe (heh)

Igbo (ibo)

Irigwe (iri)

Ivbie  North-Okpela-Arhe
(atg)

Izere (izr)

Jola-Fonyi (dyo)
Jola-Kasa (csk)

Jukun Takum (jbu)
Kabiye (kbp)

Kagulu (kki)

Kako (kkj)

Kasem (xsm)

Kenyang (ken)

Kikuyu (kik)

Kim (kia)

Kinyarwanda (kin)
Konkomba, (xon)

Konni (kma)

Kono (Sierra Leone) (kno)
Koongo (kng)

Koonzime (ozm)

Kouya (kyf)

Kuanyama (kua)

Kukele (kez)

Kuo (xuo)

Kuranko (knk)

Kusaal (kus)

Kutep (kub)

2 transla-

Kuwaa (blh)
Kuwaataay (cwt)
Laari (1di)

Lama (Togo) (las)
Lelemi (lef)

Lenje (leh)

Lobi (lob)

Lozi (loz)

Lukpa (dop)

Lyélé (lee)

Machame (jmc)

Mada (Nigeria) (mda)
Malawi Sena (swk)
Malba Birifor (bfo)
Mamara Senoufo (myk)
Mampruli (maw)
Mandinka (mnk)
Masaaba (myx)
Mbunda (mck)

Mende (Sierra Leone) (men)
Miyobe (soy)

Moba (mfq)

Mochi (old)

Moro (mor)

Mossi (mos, 2 translations)
Mumuye (mzm)
Mundani (mnf)
Mwani (wmw)

Miindii (muh)
Nafaanra (nfr)

Nande (nnb)

Nawdm (nmz)

Ndogo (ndz)

Ndonga (ndo)
Ngangam (gng)
Ngiemboon (nnh)
Nigeria Mambila (mzk)
Nigerian Fulfulde (fuv)
Nilamba (nim)

Ninzo (nin)

Nkonya (nko)
Nomaande (lem)
Noone (nhu)

Northern Dagara (dgi)



Northern Grebo (gho)
Northwest Gbaya (gya)
Ntcham (bud)

Nyabwa (nwb)
Nyakyusa-Ngonde (nyy)
Nyanja (nya, 2 translations)
Nyankole (nyn)

Nyaturu (rim)

Nyoro (nyo)

Obolo (ann)

Paasaal (sig)

Pedi (nso, 2 translations)
Plapo Krumen (ktj)
Pokomo (pkb)

Pular (fuf)

Rundi (run)

Saamia (Ism)

Sekpele (lip)

Selee (snw)

Shona (sna)

Sissala (sld)

South Fali (fal)

South Ndebele (nbl)
Southern Birifor (biv)
Southern Bobo Madaré
(bwq)

Southern Kisi (kss)
Southern Nuni (nnw)
Southern Samo (sbd)
Southwest Gbaya (gso)
Suba (sxb)

Supyire Senoufo (spp)
Susu (sus)

Swahili  (individual
guage) (swh)

Swati (ssw)
Tampulma (tpm)
Tharaka (thk)

Tikar (tik)

Timne (tem)

Toro So Dogon (dts)
Toura (Cote d’Ivoire) (neb)
Tsikimba (kdl)
Tsishingini (tsw)

lan-

Tsonga (tso)

Tswana (tsn)
Tumbuka (tum)
Tumulung Sisaala (sil)
Tupuri (tui)

Twi (twi)

Vagla (vag)

Venda (ven)

Vengo (bav)

Vunjo (vun)

Vute (vut)

Waama (wwa)
West-Central Limba (lia)
Wolof (wol)

We Northern (wob)
Xaasongaxango (kao)
Xhosa (xho)
Yalunka (yal)
Yamba (yam)
Yocoboué Dida (gud)
Yoruba (yor)

Zemba (dhm)

Zulu (zul)

Nilo-Saharan

Adhola (adh)

Alur (alz)

Avokaya (avu)
Bedjond (bjv)
Datooga (tcc)

Gulay (gvl)

Jur Modo (bex)
Karamojong (kdj)
Kenga (kyq)

Kumam (kdi)
Kupsabiny (kpz)
Lango (Uganda) (laj)
Luo (Kenya and Tanzania)
(luo)

Luwo (lwo)

Ma’di (mhi)

Mabaan (mfz)
Markweeta (enb)

Mbay (myb)

Murle (mur)

Ndo (ndp)

Ngambay (sba)
Northeastern Dinka (dip)
Nuer (nus)

Sabaot (spy)

Sar (mwm)

Shilluk (shk)
Southwestern Dinka (dik)
Teso (teo)

Uduk (udu)

Zarma (dje)

North Bougainville
Rotokas (roo)

North Caucasian

Avaric (ava)
Chechen (che)
Tabassaran (tab)

Otomanguean

Amatldn Zapotec (zpo)
Atatldhuca Mixtec (mib)
Ayautla Mazatec (vimy)
Cajonos Zapotec (zad)
Central Mazahua (maz)
Chayuco Mixtec (mih)
Chichicapan Zapotec (zpv)
Chiquihuitlan Mazatec
(maq)

Choapan Zapotec (zpc)
Coatecas Altas Zapotec
(zca)

Coatzospan Mixtec (miz)
Comaltepec Chinantec
(cco)

Copala Triqui (trc)
Diuxi-Tilantongo
(xtd)

Eastern Highland Chatino

Mixtec
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(cly)

Fastern Highland Otomi
(otm)

Estado de México Otomi
(ots)

Guerrero Amuzgo (amu)
Huautla Mazatec (mau)
Isthmus Zapotec (zai)
Jalapa De Diaz Mazatec
(mai)

Jamiltepec Mixtec (mxt)
Lachixio Zapotec (zpl)
Lalana Chinantec (cnl)
Lealao Chinantec (cle)
Magdalena Penasco Mixtec
(xtm)

Mezquital Otomi (ote)
Miahuatldn Zapotec (zam)
Mitla Zapotec (zaw)
Mixtepec Zapotec (zpm)
Nopala Chatino (cya)
Ocotepec Mixtec (mie)
Ocotldn Zapotec (zac)
Ozolotepec Zapotec (zao)
Ozumacin Chinantec (chz)
Palantla Chinantec (cpa)

Pefioles Mixtec (mil, 2
translations)
Pinotepa Nacional Mixtec

(mio)

Querétaro Otomi (otq)
Quioquitani-Quieri Zapotec
(ztq)

Quiotepec Chinantec (chq)
Rincén Zapotec (zar)

San  Jer6nimo  Tecdatl
Mazatec (maa, 2 transla-
tions)
San Juan Atzingo Popoloca
(poe)
San Juan Colorado Mixtec
(mjc)

San Juan Guelavia Zapotec

(zab)
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San Marcos Tlalcoyalco
Popoloca (pls)

San Martin Itunyoso Triqui

(trq)

San Miguel El Grande Mix-
tec (mig)

San Pedro Amuzgos

Amuzgo (azg)

Santa Maria Quiegolani Za-
potec (zpi)

Santo Domingo Albarradas
Zapotec (zas)

Silacayoapan Mixtec (mks)
Sochiapam Chinantec (cso)
Southern Puebla Mixtec
(mit)

Southern Rincon Zapotec
(zsr)

Tabaa Zapotec (zat)
Tataltepec Chatino (cta)
Tenango Otomi (otn)
Tepetotutla Chinantec (cnt)
Tepeuxila Cuicatec (cux)
Teutila Cuicatec (cut)
Texmelucan Zapotec (zpz)
Tezoatlén Mixtec (mxb)
Usila Chinantec (cuc)
Western Highland Chatino
(ctp)

Yaldlag Zapotec (zpu)
Yatee Zapotec (zty)
Yatzachi Zapotec (zav)
Yosondia Mixtec (mpm)
Zoogocho Zapotec (zpq)

Paezan
Guambiano (gum)
Péaez (pbb)
Panoan

Capanahua (kaq)
Cashibo-Cacataibo (cbr)

Cashinahua (cbs)
Chécobo (cao)
Matsés (mcf)
Sharanahua (mcd)
Shipibo-Conibo (shp)
Yaminahua (yaa)

Pauwasi

Karkar-Yuri (yuj)

Pidgin
Hiri Motu (hmo)

Puinavean
Cacua (cbv)
Nadéb (mbj)
Quechuan

Ayacucho Quechua (quy)
Cajamarca Quechua (qvc)

Canar Highland Quichua
(qxr)
Chimborazo Highland

Quichua (qug)

Cusco Quechua (quz)
Eastern Apurimac Quechua
(qve)

Huallaga Hudnuco Quechua
(qub)

Huamalies-Dos de Mayo
Hudnuco Quechua (qvh)
Huaylas Ancash Quechua
(qwh)
Huaylla
(qvw)
Imbabura
Quichua (qvi)

Inga (inb)

Lambayeque Quechua (quf)
Margos-Yarowilca-
Lauricocha Quechua (qvm)

Wanca Quechua

Highland



Napo Lowland Quechua
(qvo)

North Bolivian Quechua
(qul)

North Junin Quechua (qvn)
Northern Conchucos An-
cash Quechua (gxn)
Northern Pastaza Quichua
(qvz)

Panao Hudnuco Quechua
(gxh)

San Martin Quechua (qvs)
South Bolivian Quechua
(quh)

Southern Conchucos
cash Quechua (gxo)
Southern Pastaza Quechua
(qup)
Tena

(quw)

An-

Lowland  Quichua

Ramu-Lower Sepik

Aruamu (msy)

Senagi

Angor (agg)

Sepik

Abau (aau)

Alamblak (amp)

Ambulas (abt, 2 transla-
tions)

Hanga Hundi (wos)
Tatmul (ian)
Kwanga (kwj)
Kwoma (kmo)
Mende (Papua
Guinea) (sim)
Saniyo-Hiyewe (sny)
Sepik Iwam (iws)
Yessan-Mayo (yss, 2 trans-
lations)

New

Sino-Tibetan

Achang (acn)

Akha (ahk)
Angami Naga (njm)
Bawm Chin (bgr)
Burmese (mya)
Falam Chin (cfm)
Haka Chin (cnh)
Hakka Chinese (hak)
Kachin (kac)

Lahu (lhu)

Lushai (lus)
Mandarin Chinese (cmn, 2
translations)

Maru (mhx)

Matu Chin (hlt)
Min Chin (mwq)
Ngawn Chin (cnw)
Siyin Chin (csy)
Tedim Chin (ctd)
Thado Chin (tcz)
Zotung Chin (czt)
Zou (zom)

South Bougainville

Naasioi (nas)

South-Central Papuan

Tabo (knv, 2 translations)

Tacanan
Cavinenia (cav)
Ese Ejja (ese)
Tacana (tna)
Tarascan

Purepecha (tsz)

Tequistlatecan

Highland Oaxaca Chontal
(chd)

Torricelli

Au (avt, 2 translations)
Bukiyip (ape)

Bumbita Arapesh (aon)
Kamasau (kms)

Mufian (aoj, 2 translations)
Olo (ong)

Totonacan

Coyutla Totonac (toc)
Highland Totonac (tos)
Huehuetla Tepehua (tee)
Papantla Totonac (top)
Pisaflores Tepehua (tpp)
Tecpatldn Totonac (tcw)
Tlachichilco Tepehua (tpt)
Upper Necaxa  Totonac
(tku)

Xicotepec De Judrez To-
tonac (too)

Trans-New Guinea

Agarabi (agd)
Alekano (gah)
Amele (aey)

Aneme Wake (aby)
Angaataha (agm)
Angal Heneng (akh)
Angguruk Yali (yli)
Anjam (boj)
Ankave (aak)

Awa (Papua New Guinea)
(awb)

Awiyaana (auy)
Barai (bbb)
Bargam (mlp)
Baruya (byr)
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Benabena (bef)
Biangai (big)
Bimin (bhl)
Binumarien (bjr)
Borong (ksr)
Chuave (cjv)
Dadibi (mps)
Daga (dgz)

Dano (aso)

Dedua (ded)

East Kewa (kjs)
Ese (mcq)
Ewage-Notu (nou)
Faiwol (fai)

Fasu (faa)

Folopa (ppo)

Fore (for)

Girawa (bbr)
Golin (gvf)
Guhu-Samane (ghs)
Gwahatike (dah)
Huli (hui)
Imbongu (imo)
Inoke-Yate (ino)
Ipili (ipi)

Iyo (nca)
Kalam (kmbh,
tions)

Kamula (xla)
Kanasi (soq)
Kanite (kmu)
Kein (bmh)
Keyagana (kyg)
Kobon (kpw, 2 translations)
Komba (kpf)
Korafe-Yegha (kpr)
Kosena (kze)

Kube (kgf)

Kuman (kue, 2 translations)
Kunimaipa (kup)

Kyaka (kyc)

Mape (mlh)

Mauwake (mhl)

Melpa (med)

2 transla-

116

Mian (mpt)

Mountain Koiali (kpx)
Nabak (naf)

Nalca (nlc)

Namiae (nvm)

Ngalum (szb)

Nii (nii)

Nobonob (gaw)

North Tairora (tbg)
Numanggang (nop)
Oksapmin (opm)
Orokaiva (okv)

Rawa (rwo, 2 translations)
Safeyoka (apz)

Salt-Yui (sll)

Samberigi (ssx)

Selepet (spl)

Siane (snp, 3 translations)
Siroi (ssd)
Somba-Siawari (bmu)
South Tairora (omw)
Suena (sue)

Telefol (tlf)

Timbe (tim)
Tuma-Irumu (iou)
Umanakaina (gdn)

Usan (wnu)
Usarufa (usa)
Waffa (waj)
Wantoat (wnc)
Weri (wer)
West Kewa (kew)
Wiru (wiu)
Yareba (yrb)
Yau (Morobe
(yuw)
Yaweyuha (yby)
Yongkom (yon)
Yopno (yut)
Zia (zia)

Omie (aom)

Province)

Tucanoan

Barasana-Eduria (bsn)
Carapana (cbc)
Cubeo (cub)
Desano (des)
Guanano (gvc)
Koreguaje (coe)
Macuna (myy)
Piratapuyo (pir)
Secoya (sey)
Siona (snn)
Siriano (sri)
Tatuyo (tav)
Tucano (tuo)
Tuyuca (tue)
Waimaha (bao)

o~~~

=

Tupian

Aché (guq)

Eastern Bolivian Guarani
(gui)

Guajajdra (gub)

Guarayu (gyr)

Kaiwd (kgk)

Kayabi (kyz)

Mbyé Guarani (gun)
Munduruki (myu)
Paraguayan Guarani (gug)
Sateré-Mawé (mav)

Sirioné (srq)

Tenharim (pah)
Urubi-Kaapor (urb)
Western Bolivian Guaran{
(gnw)

Uralic

Eastern Mari (mhr)
Erzya (myv)
Estonian (est,
tions)

Finnish (fin, 3 translations)
Hungarian (hun)

2 transla-



Komi-Zyrian (kpv)
Northern Sami (sme)

Uto-Aztecan

Central Huasteca Nahuatl
(nch)

Central Tarahumara (tar)
Eastern Huasteca Nahuatl
(nhe)

El Nayar Cora (crn, 2 trans-
lations)

Guerrero Nahuatl (ngu)
Highland Puebla Nahuatl
(azz)

Hopi (hop)

Huichol (hch)

Lowland Tarahumara (tac)
Mayo (mfy)

Michoacdn Nahuatl (ncl)
Northern Oaxaca Nahuatl
(nhy)

Northern Paiute (pao)
Northern Puebla Nahuatl

(ncf)
Northern Tepehuan (ntp)
Southeastern Puebla Nahu-
atl (npl)
Southeastern
(stp)
Tetelcingo Nahuatl (nhg)
Tohono O’odham (ood)
Western Huasteca Nahuatl
(nhw)

Yaqui (yaq)
Zacatldn-Ahuacatlan-
Tepetzintla Nahuatl (nhi)

Tepehuan

West Papuan

Galela (gbi)
Tabaru (tby)
Tobelo (tlb)
Yawa (yva)

Witotoan

Bora (boa)
Minica Huitoto (hto)

Muinane (bmr)
Murui Huitoto (huu)
Yaguan

Yagua (yad)

Yanomaman

Sanuma (xsu)
Yanomdmi (wca)
Yele-West New Britain
Pele-Ata (ata)

Yele (yle)

Zamucoan

Ayoreo (ayo)
Chamacoco (ceg)
Zaparoan

Arabela (arl)
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Svensk sammanfattning

Introduktion

I den hér avhandlingen nérmar jag mig ett antal till synes vildigt olika problem: att
hitta ordklasser i svenskt teckensprak och 1001 andra sprak runt véirlden, att undersoka
ordfoljd i alla dessa sprak, och att ta reda pa om de gor skillnad pa hénder och ar-
mar. Det gemensamma temat som forenar dessa olika dmnen &r metoden: ordlinkning
i parallelltexter. Det hér dr en av de uppgifter som verkar busenkla fér en nybérjare,
och djavulskt svara for oss som har forsokt att programmera en dator att utféra dem.
Problemet #r detta: givet oversatta meningar pa olika sprak, markera vilka ord som
motsvarar varandra i dessa sprak.

Bortsett fran tillimpningarna ovan kommer mycket av den hir avhandlingen behand-
la utveckling och utforskning av kirnmetoderna for ordlinkning, speciellt det nya filtet
om Bayesianska modeller f6r ordlinkning med algoritmer av typen MCMC (eng. Markov
Chain Monte Carlo) for inferens, i synnerhet Gibbs-algoritmen (eng. Gibbs sampling)
(DeNero et al. 2008; Mermer & Saraglar 2011; Gal & Blunsom 2013). Trots att tidigare
studier har visat att MCMC-metoder ér ett lockande alternativ till de EM-baserade (eng.
Expectation-Maximization) metoderna som oftast anviinds, &r de fa tidigare studier-
na relativt begridnsade och jag sag ett behov av en bredare studie om Bayesianska
ordlankningsmodeller. I ett nétskal gér Bayesianska modeller det mojligt att enkelt
vikta losningen mot vad som &r lingvistiskt troligt, till exempel genom att minska
sannolikheten for ett Gverdrivet stort antal postulerade oversdttningar for varje ord,
eller genom att oka sannolikheten for en realistisk frekvensdistribution for interlingua-
begreppen som anvénds i den flersprakiga ordléinkningsalgoritm som presenteras i kapitel
5. Givet att man véljer ldmpliga sannolikhetsférdelningar, kan Gibbs-algoritmen enkelt
anvandas trots att modellens sannolikhetsfunktion &r vildigt komplex.

Mina huvudsakliga forskningsfragor kan sammanfattas som foljer:

1. Vad kdnnetecknar MCMC-algoritmer for ordlankning, hur ska de tillimpas i prak-
tiken, och hur &r de jamfort med andra metoder?

2. Hur kan man utféra ordlénkning i massivt parallella korpusar med hundratals eller
tusentals sprak?

3. Hur kan ordlinkade parallellkorpusar anvindas for att genomfoéra undersokningar
inom lingvistisk typologi?

4. Kan ordldnkning och annotationsoverféring utféras samtidigt for att férbattra nog-
grannheten for bada uppgifterna?

119



Svensk sammanfattning

Bidrag

Mina bidrag i den hér avhandlingen &r av olika typer: algoritmer, tillimpningar och
utvirderingar. Dessa sammanfattas hiir, med referenser till vilka av de ovanstaende forsk-
ningsfragorna som besvaras.

Algoritmer

De frimsta innovationerna i algoritmvig finns i kapitel 5, didr en metod for flersprakig
ordléinkning genom ett interlingua presenteras (forskningsfraga 2), och i kapitel 4 dér
ordlédnking och ordklassoverforing utfors gemensamt (forskningsfraga 4).

Flerspraklig ordlankning #r ett nytt omrade, dir min metod utgor ett sitt att utnytt-
ja den informationsrikedom som finns i massivt parallella texter, alltsa texter som &r
Oversatta till hundratals eller tusentals sprak. Medan normala ordldnkningsalgoritmer
antar att texterna som ska ldnkas dr fasta, forsoker min algoritm i stéllet att samtidigt
ldra sig bade en mellanrepresentation, ett interlingua, och linkar fran denna till vart och
ett av de manga spraken. Detta interlingua syftar till att utifran de olika 6verséttningarna
sa ndra som mojligt approximera den semantiska information som finns i parallelltexten,
och de "ord” som anviéinds i representationen ska representera tvirsprakliga begrepp som
overlag ligger nira betydelsen hos de ord som anvénds i de olika spraken.

Tidigare arbeten har visat dels att ordlankning kan anvindas for att 6verfora lingvis-
tisk annotation mellan sprak dér det finns parallelltexter, dels att sadan annotation kan
anvandas for att ge en mer precis ordldnkning. Min nya algoritm som presenteras i kapi-
tel 4 kan gora bada sakerna samtidigt, vilket leder till béattre ordlankning nér bara ett
av spraken som ldnkas har lingvistiska annotationer. Detta &r en ganska typisk situation
i praktiken, eftersom de allra flesta av vérldens sprak saknar sprakspecifika verktyg for
lingvistisk annotation.

Tillampningar

Ordlénkning i sig &r inte speciellt spannande for de flesta. Med detta i atanke har jag
forsokt att tillimpa mina ordlédnkningsalgoritmer pa nagra valda problem fran olika
omraden inom lingvistik och sprakteknologi. De flesta av tillimpningarna skulle ocksa
vara mojliga att genomféra med andra ordléinknigsmetoder &n de som jag utforskar, och
syftet &r inte frimst att testa mina egna algoritmer (fér det, se nedan), utan att inspirera
andra att anvinda ordlédnkade parallelltexter i sin forskning.

Min algoritm for samtidig ordlinkning och annotationsverforing (kapitel 4, forsk-
ningsfraga 4) har jag anvint i avsnitt 4.3 for att fora ver ordklassannotation till tran-
skriberat svenskt teckensprak i Institutionen for lingvistiks svenska teckensprakskorpus.
Detta &r forsta gangen teckensprak har annoterats med ordklasser med hjilp av automa-
tiska verktyg. Dessutom har annotationen mojliggjort ny grundforskning om svenskt
teckensprak.

Forskningsfraga 3 berors friamst i tva tillimpningar. Till att borja med har jag anvint
den flersprakiga linkningsalgoritmen i kapitel 5 for att undersoka ordféljd i de 1001
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spraken déir jag har tillgang till oversidttningar av Nya Testamentet, genom att pro-
jicera dependensstruktur forst till interlinguarepresentationen och sedan vidare till de
olika oversittningarna (avsnitt 5.3). Genom att jimfora med WALS-databasen (Dryer
& Haspelmath 2013) kan man se att svaren man far stimmer fér mellan 86% och 96%
av spraken, beroende pa vilket fenomen man tittar pa.

Vidare har jag anvéant min algoritm fér samtidig ordlénkning och annotationsoéverforing
for att undersoka vilka sprak som kolexifierar olika begrepp, alltsa uttrycker dem med
samma ord (avsnitt 4.5). Till exempel kan metoden uppticka att ELD och TRAD ut-
trycks med samma ord i ett antal obesliktade sprak pa Papua med omnejd, ett fynd
som bekréftas av andra studier och ASJP-databasen Wichmann et al. (2013).

Utvarderingar

Kapitel 3 och 4 innehaller noggranna utvirderingar for ett antal sprakpar, och visar att
Bayesianska ordldnkningsmodeller #r konkurrenskraftiga for en bredare mingd sprak
dn vad som tidigare visats (forskningsfraga 1). Dessutom innebir de en stark baslin-
je for de fortsatta experimenten som presenteras i dessa kapitel. Jag undersoker ett
antal fragor som tidigare forskning limnat obesvarade: vilken effekt hierarkiska Pitman-
Yordistributioner har pa ordléinkningsalgoritmen jamfort med den mer berikningsméssigt
effektiva icke-hirerarkiska Dirichlet-distributionen, hur vil en explicit Gibbs-sampler
fungerar for ordlankning, och hur olika siitt att initiera modellen paverkar resultatet.
Vidare publicerar jag genomgaende den statistik som krivs for varje experiment for att
beréikna de manga utvirderingsmatt som anvénds. Jag hoppas att det hédr kan inspirera
andra till att géra samma sak, vilket skulle leda till att resultaten fran ordlidnkningsstudi-
er blir lattare att jamfora i framtiden.

Slutsatser

Min huvudsakliga slutsats fran arbetet som presenteras i avhandlingen #r att Bayesian-
ska modeller for ordlédnkning erbjuder ett precist, flexibelt och berdkningsméssigt ef-
fektivt alternativ till de EM-baserade algoritmer som anvints &nda sedan Brown et al.
(1993). Enkelheten i Gibbs-algoritmen tillater modellerna att bli mer komplexa sam-
tidigt som inferens forblir effektiv och enkel, och jag har utnyttjat detta pa tva olika
sitt: genom att forbéttra noggrannheten vid ordléinkning av bitexter genom att samtidigt
fora over ordklassannotationer, samt genom att utoka bitextmodellen till en flersprakig
lankningsmodell.

For att uppmuntra andra att anvéinda metoderna jag har utvecklat och utvéirderat,
finns min implementation tillginglig f6r nedladdning under en copyleft-licens.! Dessutom
finns data och mjukvara fér experimenten som beskrivs arkiverade pa Institutionen for
lingvistik pa Stockholms universitet.

'http://www.ling.su.se/spacos
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Framtida arbete

Innan vi borjar spekulera om framtiden fér ordléankningsmetoder, boér vi ta ett steg
tillbaka och fundera pa om det faktiskt finns nagon. Den senaste tidens framsteg inom
neuronnétsteknik har lett till modeller for statistisk maskinoverséttning (SMT) som
direkt oversiitter meningar i ett sprak till ett annat genom vektorrepresentationer for
hela meningen, utan att anvinda ordlankar (Kalchbrenner & Blunsom 2013; Sutskever
et al. 2014). T takt med att de nya 6versittningsmodellerna borjar kunna konkurrera med
traditionella ordlankningsbaserade modeller, finns det en verklig mdéjlighet att berdkning
av ordliankar blir ett ointressant problem, i alla fall sett fran dess mest inflytelserika
tillimpning: maskinéverséttning. I den hir avhandlingen har jag presenterat flera andra
tillimpningar baserade pa ordlénkar, men bara framtiden kan utvisa hur manga av dessa
problem som kommer att fortsétta vara beroende av ordlankar.

Med detta sagt, dr det kanske viktigaste framtida projektet att ga vidare fran ordlink-
ning till en mer generell linkning pa flera nivaer. Antagandet att texter pa olika sprak kan
lénkas pa ordniva &r aldrig helt sant, och klyftan mellan detta antagande och verkligheten
viixer ytterligare nér vi forsoker linka obesliktade och strukturellt olika sprik. A ena
sidan dr ord ofta for grova enheter for att kunna linkas pa ett bra sitt, eftersom de
brukar besta av flera morfem som i de flesta sprak kan, eller borde, linkas individuellt
snarare fin beorende pa vilket ord de tillhér. A andra sidan kan ordnivan ocksa vara for
detaljerad, nir motsvarigheten géller hela konstruktioner snarare &n enskilda ord.

P& en mer teknisk niva kan vi fraga oss vilka typer av problem som kan och borde
16sas tillsammans med ordléankning. Jag har behandlat fallen med ordklasstaggning i
kapitel 4 och i forbifarten ndmnt lemmatisering, men det finns en uppsjé av andra kan-
didater: syntaktisk parsning, morfologisk analys, orddisambiguering, och sa vidare. En
oversittning gjord av en ménniska, for att inte tala om de tusentals 6versdttningar som
finns av Nya Testamentet, innebér ett enormt annotationsarbete som vi inte bor lata ga
till spillo.
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